Description: The scalar field of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) | |
| tcphsca.f | |- F = ( Scalar ` W ) | ||
| Assertion | tcphsca | |- F = ( Scalar ` G ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) | |
| 2 | tcphsca.f | |- F = ( Scalar ` W ) | |
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) | |
| 4 | 3 | tcphex | |- ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V | 
| 5 | eqid | |- ( .i ` W ) = ( .i ` W ) | |
| 6 | 1 3 5 | tcphval | |- G = ( W toNrmGrp ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) | 
| 7 | 6 2 | tngsca | |- ( ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V -> F = ( Scalar ` G ) ) | 
| 8 | 4 7 | ax-mp | |- F = ( Scalar ` G ) |