Description: The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphsub.v | |- .- = ( -g ` W ) |
||
| Assertion | tcphsub | |- .- = ( -g ` G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphsub.v | |- .- = ( -g ` W ) |
|
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | 1 3 | tcphbas | |- ( Base ` W ) = ( Base ` G ) |
| 5 | 4 | a1i | |- ( T. -> ( Base ` W ) = ( Base ` G ) ) |
| 6 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 7 | 1 6 | tchplusg | |- ( +g ` W ) = ( +g ` G ) |
| 8 | 7 | a1i | |- ( T. -> ( +g ` W ) = ( +g ` G ) ) |
| 9 | 5 8 | grpsubpropd | |- ( T. -> ( -g ` W ) = ( -g ` G ) ) |
| 10 | 9 | mptru | |- ( -g ` W ) = ( -g ` G ) |
| 11 | 2 10 | eqtri | |- .- = ( -g ` G ) |