Metamath Proof Explorer


Theorem tcphsub

Description: The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses tcphval.n
|- G = ( toCPreHil ` W )
tcphsub.v
|- .- = ( -g ` W )
Assertion tcphsub
|- .- = ( -g ` G )

Proof

Step Hyp Ref Expression
1 tcphval.n
 |-  G = ( toCPreHil ` W )
2 tcphsub.v
 |-  .- = ( -g ` W )
3 eqid
 |-  ( Base ` W ) = ( Base ` W )
4 1 3 tcphbas
 |-  ( Base ` W ) = ( Base ` G )
5 4 a1i
 |-  ( T. -> ( Base ` W ) = ( Base ` G ) )
6 eqid
 |-  ( +g ` W ) = ( +g ` W )
7 1 6 tchplusg
 |-  ( +g ` W ) = ( +g ` G )
8 7 a1i
 |-  ( T. -> ( +g ` W ) = ( +g ` G ) )
9 5 8 grpsubpropd
 |-  ( T. -> ( -g ` W ) = ( -g ` G ) )
10 9 mptru
 |-  ( -g ` W ) = ( -g ` G )
11 2 10 eqtri
 |-  .- = ( -g ` G )