| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphtopn.d |  |-  D = ( dist ` G ) | 
						
							| 3 |  | tcphtopn.j |  |-  J = ( TopOpen ` G ) | 
						
							| 4 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 5 | 4 | tcphex |  |-  ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V | 
						
							| 6 |  | eqid |  |-  ( .i ` W ) = ( .i ` W ) | 
						
							| 7 | 1 4 6 | tcphval |  |-  G = ( W toNrmGrp ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) | 
						
							| 8 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 9 | 7 2 8 | tngtopn |  |-  ( ( W e. V /\ ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V ) -> ( MetOpen ` D ) = ( TopOpen ` G ) ) | 
						
							| 10 | 5 9 | mpan2 |  |-  ( W e. V -> ( MetOpen ` D ) = ( TopOpen ` G ) ) | 
						
							| 11 | 3 10 | eqtr4id |  |-  ( W e. V -> J = ( MetOpen ` D ) ) |