| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tc2.1 |  |-  A e. _V | 
						
							| 2 | 1 | ssex |  |-  ( B C_ A -> B e. _V ) | 
						
							| 3 |  | tcvalg |  |-  ( B e. _V -> ( TC ` B ) = |^| { x | ( B C_ x /\ Tr x ) } ) | 
						
							| 4 | 2 3 | syl |  |-  ( B C_ A -> ( TC ` B ) = |^| { x | ( B C_ x /\ Tr x ) } ) | 
						
							| 5 |  | sstr2 |  |-  ( B C_ A -> ( A C_ x -> B C_ x ) ) | 
						
							| 6 | 5 | anim1d |  |-  ( B C_ A -> ( ( A C_ x /\ Tr x ) -> ( B C_ x /\ Tr x ) ) ) | 
						
							| 7 | 6 | ss2abdv |  |-  ( B C_ A -> { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } ) | 
						
							| 8 |  | intss |  |-  ( { x | ( A C_ x /\ Tr x ) } C_ { x | ( B C_ x /\ Tr x ) } -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) | 
						
							| 9 | 7 8 | syl |  |-  ( B C_ A -> |^| { x | ( B C_ x /\ Tr x ) } C_ |^| { x | ( A C_ x /\ Tr x ) } ) | 
						
							| 10 |  | tcvalg |  |-  ( A e. _V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) | 
						
							| 11 | 1 10 | ax-mp |  |-  ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } | 
						
							| 12 | 9 11 | sseqtrrdi |  |-  ( B C_ A -> |^| { x | ( B C_ x /\ Tr x ) } C_ ( TC ` A ) ) | 
						
							| 13 | 4 12 | eqsstrd |  |-  ( B C_ A -> ( TC ` B ) C_ ( TC ` A ) ) |