Step |
Hyp |
Ref |
Expression |
1 |
|
trint |
|- ( A. y e. { x | ( A C_ x /\ Tr x ) } Tr y -> Tr |^| { x | ( A C_ x /\ Tr x ) } ) |
2 |
|
vex |
|- y e. _V |
3 |
|
sseq2 |
|- ( x = y -> ( A C_ x <-> A C_ y ) ) |
4 |
|
treq |
|- ( x = y -> ( Tr x <-> Tr y ) ) |
5 |
3 4
|
anbi12d |
|- ( x = y -> ( ( A C_ x /\ Tr x ) <-> ( A C_ y /\ Tr y ) ) ) |
6 |
2 5
|
elab |
|- ( y e. { x | ( A C_ x /\ Tr x ) } <-> ( A C_ y /\ Tr y ) ) |
7 |
6
|
simprbi |
|- ( y e. { x | ( A C_ x /\ Tr x ) } -> Tr y ) |
8 |
1 7
|
mprg |
|- Tr |^| { x | ( A C_ x /\ Tr x ) } |
9 |
|
tcvalg |
|- ( A e. _V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
10 |
|
treq |
|- ( ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } -> ( Tr ( TC ` A ) <-> Tr |^| { x | ( A C_ x /\ Tr x ) } ) ) |
11 |
9 10
|
syl |
|- ( A e. _V -> ( Tr ( TC ` A ) <-> Tr |^| { x | ( A C_ x /\ Tr x ) } ) ) |
12 |
8 11
|
mpbiri |
|- ( A e. _V -> Tr ( TC ` A ) ) |
13 |
|
tr0 |
|- Tr (/) |
14 |
|
fvprc |
|- ( -. A e. _V -> ( TC ` A ) = (/) ) |
15 |
|
treq |
|- ( ( TC ` A ) = (/) -> ( Tr ( TC ` A ) <-> Tr (/) ) ) |
16 |
14 15
|
syl |
|- ( -. A e. _V -> ( Tr ( TC ` A ) <-> Tr (/) ) ) |
17 |
13 16
|
mpbiri |
|- ( -. A e. _V -> Tr ( TC ` A ) ) |
18 |
12 17
|
pm2.61i |
|- Tr ( TC ` A ) |