Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( y = A -> ( TC ` y ) = ( TC ` A ) ) |
2 |
|
sseq1 |
|- ( y = A -> ( y C_ x <-> A C_ x ) ) |
3 |
2
|
anbi1d |
|- ( y = A -> ( ( y C_ x /\ Tr x ) <-> ( A C_ x /\ Tr x ) ) ) |
4 |
3
|
abbidv |
|- ( y = A -> { x | ( y C_ x /\ Tr x ) } = { x | ( A C_ x /\ Tr x ) } ) |
5 |
4
|
inteqd |
|- ( y = A -> |^| { x | ( y C_ x /\ Tr x ) } = |^| { x | ( A C_ x /\ Tr x ) } ) |
6 |
1 5
|
eqeq12d |
|- ( y = A -> ( ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } <-> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) ) |
7 |
|
vex |
|- y e. _V |
8 |
7
|
tz9.1c |
|- |^| { x | ( y C_ x /\ Tr x ) } e. _V |
9 |
|
df-tc |
|- TC = ( y e. _V |-> |^| { x | ( y C_ x /\ Tr x ) } ) |
10 |
9
|
fvmpt2 |
|- ( ( y e. _V /\ |^| { x | ( y C_ x /\ Tr x ) } e. _V ) -> ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } ) |
11 |
7 8 10
|
mp2an |
|- ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } |
12 |
6 11
|
vtoclg |
|- ( A e. V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |