| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( y = A -> ( TC ` y ) = ( TC ` A ) ) | 
						
							| 2 |  | sseq1 |  |-  ( y = A -> ( y C_ x <-> A C_ x ) ) | 
						
							| 3 | 2 | anbi1d |  |-  ( y = A -> ( ( y C_ x /\ Tr x ) <-> ( A C_ x /\ Tr x ) ) ) | 
						
							| 4 | 3 | abbidv |  |-  ( y = A -> { x | ( y C_ x /\ Tr x ) } = { x | ( A C_ x /\ Tr x ) } ) | 
						
							| 5 | 4 | inteqd |  |-  ( y = A -> |^| { x | ( y C_ x /\ Tr x ) } = |^| { x | ( A C_ x /\ Tr x ) } ) | 
						
							| 6 | 1 5 | eqeq12d |  |-  ( y = A -> ( ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } <-> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) ) | 
						
							| 7 |  | vex |  |-  y e. _V | 
						
							| 8 | 7 | tz9.1c |  |-  |^| { x | ( y C_ x /\ Tr x ) } e. _V | 
						
							| 9 |  | df-tc |  |-  TC = ( y e. _V |-> |^| { x | ( y C_ x /\ Tr x ) } ) | 
						
							| 10 | 9 | fvmpt2 |  |-  ( ( y e. _V /\ |^| { x | ( y C_ x /\ Tr x ) } e. _V ) -> ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } ) | 
						
							| 11 | 7 8 10 | mp2an |  |-  ( TC ` y ) = |^| { x | ( y C_ x /\ Tr x ) } | 
						
							| 12 | 6 11 | vtoclg |  |-  ( A e. V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |