Step |
Hyp |
Ref |
Expression |
1 |
|
r1elssi |
|- ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) |
2 |
|
dftr3 |
|- ( Tr U. ( R1 " On ) <-> A. x e. U. ( R1 " On ) x C_ U. ( R1 " On ) ) |
3 |
|
r1elssi |
|- ( x e. U. ( R1 " On ) -> x C_ U. ( R1 " On ) ) |
4 |
2 3
|
mprgbir |
|- Tr U. ( R1 " On ) |
5 |
|
tcmin |
|- ( A e. U. ( R1 " On ) -> ( ( A C_ U. ( R1 " On ) /\ Tr U. ( R1 " On ) ) -> ( TC ` A ) C_ U. ( R1 " On ) ) ) |
6 |
4 5
|
mpan2i |
|- ( A e. U. ( R1 " On ) -> ( A C_ U. ( R1 " On ) -> ( TC ` A ) C_ U. ( R1 " On ) ) ) |
7 |
1 6
|
mpd |
|- ( A e. U. ( R1 " On ) -> ( TC ` A ) C_ U. ( R1 " On ) ) |
8 |
|
fvex |
|- ( TC ` A ) e. _V |
9 |
8
|
r1elss |
|- ( ( TC ` A ) e. U. ( R1 " On ) <-> ( TC ` A ) C_ U. ( R1 " On ) ) |
10 |
7 9
|
sylibr |
|- ( A e. U. ( R1 " On ) -> ( TC ` A ) e. U. ( R1 " On ) ) |