Step |
Hyp |
Ref |
Expression |
1 |
|
tdeglem.a |
|- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
2 |
|
tdeglem.h |
|- H = ( h e. A |-> ( CCfld gsum h ) ) |
3 |
|
rexnal |
|- ( E. x e. I -. ( X ` x ) = 0 <-> -. A. x e. I ( X ` x ) = 0 ) |
4 |
|
df-ne |
|- ( ( X ` x ) =/= 0 <-> -. ( X ` x ) = 0 ) |
5 |
|
oveq2 |
|- ( h = X -> ( CCfld gsum h ) = ( CCfld gsum X ) ) |
6 |
|
ovex |
|- ( CCfld gsum X ) e. _V |
7 |
5 2 6
|
fvmpt |
|- ( X e. A -> ( H ` X ) = ( CCfld gsum X ) ) |
8 |
7
|
ad2antlr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( H ` X ) = ( CCfld gsum X ) ) |
9 |
1
|
psrbagfOLD |
|- ( ( I e. V /\ X e. A ) -> X : I --> NN0 ) |
10 |
9
|
feqmptd |
|- ( ( I e. V /\ X e. A ) -> X = ( y e. I |-> ( X ` y ) ) ) |
11 |
10
|
adantr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> X = ( y e. I |-> ( X ` y ) ) ) |
12 |
11
|
oveq2d |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum X ) = ( CCfld gsum ( y e. I |-> ( X ` y ) ) ) ) |
13 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
14 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
15 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
16 |
|
cnring |
|- CCfld e. Ring |
17 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
18 |
16 17
|
mp1i |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> CCfld e. CMnd ) |
19 |
|
simpll |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> I e. V ) |
20 |
9
|
adantr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> X : I --> NN0 ) |
21 |
20
|
ffvelrnda |
|- ( ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) /\ y e. I ) -> ( X ` y ) e. NN0 ) |
22 |
21
|
nn0cnd |
|- ( ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) /\ y e. I ) -> ( X ` y ) e. CC ) |
23 |
1
|
psrbagfsuppOLD |
|- ( ( X e. A /\ I e. V ) -> X finSupp 0 ) |
24 |
23
|
ancoms |
|- ( ( I e. V /\ X e. A ) -> X finSupp 0 ) |
25 |
24
|
adantr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> X finSupp 0 ) |
26 |
11 25
|
eqbrtrrd |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. I |-> ( X ` y ) ) finSupp 0 ) |
27 |
|
incom |
|- ( ( I \ { x } ) i^i { x } ) = ( { x } i^i ( I \ { x } ) ) |
28 |
|
disjdif |
|- ( { x } i^i ( I \ { x } ) ) = (/) |
29 |
27 28
|
eqtri |
|- ( ( I \ { x } ) i^i { x } ) = (/) |
30 |
29
|
a1i |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( I \ { x } ) i^i { x } ) = (/) ) |
31 |
|
difsnid |
|- ( x e. I -> ( ( I \ { x } ) u. { x } ) = I ) |
32 |
31
|
eqcomd |
|- ( x e. I -> I = ( ( I \ { x } ) u. { x } ) ) |
33 |
32
|
ad2antrl |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> I = ( ( I \ { x } ) u. { x } ) ) |
34 |
13 14 15 18 19 22 26 30 33
|
gsumsplit2 |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. I |-> ( X ` y ) ) ) = ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) ) |
35 |
8 12 34
|
3eqtrd |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( H ` X ) = ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) ) |
36 |
|
difexg |
|- ( I e. V -> ( I \ { x } ) e. _V ) |
37 |
36
|
ad2antrr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( I \ { x } ) e. _V ) |
38 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
39 |
38
|
a1i |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> NN0 e. ( SubMnd ` CCfld ) ) |
40 |
|
eldifi |
|- ( y e. ( I \ { x } ) -> y e. I ) |
41 |
|
ffvelrn |
|- ( ( X : I --> NN0 /\ y e. I ) -> ( X ` y ) e. NN0 ) |
42 |
20 40 41
|
syl2an |
|- ( ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) /\ y e. ( I \ { x } ) ) -> ( X ` y ) e. NN0 ) |
43 |
42
|
fmpttd |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) : ( I \ { x } ) --> NN0 ) |
44 |
36
|
mptexd |
|- ( I e. V -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) e. _V ) |
45 |
44
|
ad2antrr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) e. _V ) |
46 |
|
funmpt |
|- Fun ( y e. ( I \ { x } ) |-> ( X ` y ) ) |
47 |
46
|
a1i |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> Fun ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) |
48 |
|
funmpt |
|- Fun ( y e. I |-> ( X ` y ) ) |
49 |
|
difss |
|- ( I \ { x } ) C_ I |
50 |
|
resmpt |
|- ( ( I \ { x } ) C_ I -> ( ( y e. I |-> ( X ` y ) ) |` ( I \ { x } ) ) = ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) |
51 |
49 50
|
ax-mp |
|- ( ( y e. I |-> ( X ` y ) ) |` ( I \ { x } ) ) = ( y e. ( I \ { x } ) |-> ( X ` y ) ) |
52 |
|
resss |
|- ( ( y e. I |-> ( X ` y ) ) |` ( I \ { x } ) ) C_ ( y e. I |-> ( X ` y ) ) |
53 |
51 52
|
eqsstrri |
|- ( y e. ( I \ { x } ) |-> ( X ` y ) ) C_ ( y e. I |-> ( X ` y ) ) |
54 |
|
mptexg |
|- ( I e. V -> ( y e. I |-> ( X ` y ) ) e. _V ) |
55 |
54
|
ad2antrr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. I |-> ( X ` y ) ) e. _V ) |
56 |
|
funsssuppss |
|- ( ( Fun ( y e. I |-> ( X ` y ) ) /\ ( y e. ( I \ { x } ) |-> ( X ` y ) ) C_ ( y e. I |-> ( X ` y ) ) /\ ( y e. I |-> ( X ` y ) ) e. _V ) -> ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) supp 0 ) C_ ( ( y e. I |-> ( X ` y ) ) supp 0 ) ) |
57 |
48 53 55 56
|
mp3an12i |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) supp 0 ) C_ ( ( y e. I |-> ( X ` y ) ) supp 0 ) ) |
58 |
|
fsuppsssupp |
|- ( ( ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) e. _V /\ Fun ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) /\ ( ( y e. I |-> ( X ` y ) ) finSupp 0 /\ ( ( y e. ( I \ { x } ) |-> ( X ` y ) ) supp 0 ) C_ ( ( y e. I |-> ( X ` y ) ) supp 0 ) ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) finSupp 0 ) |
59 |
45 47 26 57 58
|
syl22anc |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( y e. ( I \ { x } ) |-> ( X ` y ) ) finSupp 0 ) |
60 |
14 18 37 39 43 59
|
gsumsubmcl |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) e. NN0 ) |
61 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
62 |
16 61
|
mp1i |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> CCfld e. Mnd ) |
63 |
|
simprl |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> x e. I ) |
64 |
20 63
|
ffvelrnd |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( X ` x ) e. NN0 ) |
65 |
64
|
nn0cnd |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( X ` x ) e. CC ) |
66 |
|
fveq2 |
|- ( y = x -> ( X ` y ) = ( X ` x ) ) |
67 |
13 66
|
gsumsn |
|- ( ( CCfld e. Mnd /\ x e. I /\ ( X ` x ) e. CC ) -> ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) = ( X ` x ) ) |
68 |
62 63 65 67
|
syl3anc |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) = ( X ` x ) ) |
69 |
|
simprr |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( X ` x ) =/= 0 ) |
70 |
69 4
|
sylib |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> -. ( X ` x ) = 0 ) |
71 |
|
elnn0 |
|- ( ( X ` x ) e. NN0 <-> ( ( X ` x ) e. NN \/ ( X ` x ) = 0 ) ) |
72 |
64 71
|
sylib |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( X ` x ) e. NN \/ ( X ` x ) = 0 ) ) |
73 |
|
orel2 |
|- ( -. ( X ` x ) = 0 -> ( ( ( X ` x ) e. NN \/ ( X ` x ) = 0 ) -> ( X ` x ) e. NN ) ) |
74 |
70 72 73
|
sylc |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( X ` x ) e. NN ) |
75 |
68 74
|
eqeltrd |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) e. NN ) |
76 |
|
nn0nnaddcl |
|- ( ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) e. NN0 /\ ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) e. NN ) -> ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) e. NN ) |
77 |
60 75 76
|
syl2anc |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) e. NN ) |
78 |
77
|
nnne0d |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( ( CCfld gsum ( y e. ( I \ { x } ) |-> ( X ` y ) ) ) + ( CCfld gsum ( y e. { x } |-> ( X ` y ) ) ) ) =/= 0 ) |
79 |
35 78
|
eqnetrd |
|- ( ( ( I e. V /\ X e. A ) /\ ( x e. I /\ ( X ` x ) =/= 0 ) ) -> ( H ` X ) =/= 0 ) |
80 |
79
|
expr |
|- ( ( ( I e. V /\ X e. A ) /\ x e. I ) -> ( ( X ` x ) =/= 0 -> ( H ` X ) =/= 0 ) ) |
81 |
4 80
|
syl5bir |
|- ( ( ( I e. V /\ X e. A ) /\ x e. I ) -> ( -. ( X ` x ) = 0 -> ( H ` X ) =/= 0 ) ) |
82 |
81
|
rexlimdva |
|- ( ( I e. V /\ X e. A ) -> ( E. x e. I -. ( X ` x ) = 0 -> ( H ` X ) =/= 0 ) ) |
83 |
3 82
|
syl5bir |
|- ( ( I e. V /\ X e. A ) -> ( -. A. x e. I ( X ` x ) = 0 -> ( H ` X ) =/= 0 ) ) |
84 |
83
|
necon4bd |
|- ( ( I e. V /\ X e. A ) -> ( ( H ` X ) = 0 -> A. x e. I ( X ` x ) = 0 ) ) |
85 |
9
|
ffnd |
|- ( ( I e. V /\ X e. A ) -> X Fn I ) |
86 |
|
0nn0 |
|- 0 e. NN0 |
87 |
|
fnconstg |
|- ( 0 e. NN0 -> ( I X. { 0 } ) Fn I ) |
88 |
86 87
|
mp1i |
|- ( ( I e. V /\ X e. A ) -> ( I X. { 0 } ) Fn I ) |
89 |
|
eqfnfv |
|- ( ( X Fn I /\ ( I X. { 0 } ) Fn I ) -> ( X = ( I X. { 0 } ) <-> A. x e. I ( X ` x ) = ( ( I X. { 0 } ) ` x ) ) ) |
90 |
85 88 89
|
syl2anc |
|- ( ( I e. V /\ X e. A ) -> ( X = ( I X. { 0 } ) <-> A. x e. I ( X ` x ) = ( ( I X. { 0 } ) ` x ) ) ) |
91 |
|
c0ex |
|- 0 e. _V |
92 |
91
|
fvconst2 |
|- ( x e. I -> ( ( I X. { 0 } ) ` x ) = 0 ) |
93 |
92
|
eqeq2d |
|- ( x e. I -> ( ( X ` x ) = ( ( I X. { 0 } ) ` x ) <-> ( X ` x ) = 0 ) ) |
94 |
93
|
ralbiia |
|- ( A. x e. I ( X ` x ) = ( ( I X. { 0 } ) ` x ) <-> A. x e. I ( X ` x ) = 0 ) |
95 |
90 94
|
bitrdi |
|- ( ( I e. V /\ X e. A ) -> ( X = ( I X. { 0 } ) <-> A. x e. I ( X ` x ) = 0 ) ) |
96 |
84 95
|
sylibrd |
|- ( ( I e. V /\ X e. A ) -> ( ( H ` X ) = 0 -> X = ( I X. { 0 } ) ) ) |
97 |
1
|
psrbag0 |
|- ( I e. V -> ( I X. { 0 } ) e. A ) |
98 |
97
|
adantr |
|- ( ( I e. V /\ X e. A ) -> ( I X. { 0 } ) e. A ) |
99 |
|
oveq2 |
|- ( h = ( I X. { 0 } ) -> ( CCfld gsum h ) = ( CCfld gsum ( I X. { 0 } ) ) ) |
100 |
|
ovex |
|- ( CCfld gsum ( I X. { 0 } ) ) e. _V |
101 |
99 2 100
|
fvmpt |
|- ( ( I X. { 0 } ) e. A -> ( H ` ( I X. { 0 } ) ) = ( CCfld gsum ( I X. { 0 } ) ) ) |
102 |
98 101
|
syl |
|- ( ( I e. V /\ X e. A ) -> ( H ` ( I X. { 0 } ) ) = ( CCfld gsum ( I X. { 0 } ) ) ) |
103 |
|
fconstmpt |
|- ( I X. { 0 } ) = ( x e. I |-> 0 ) |
104 |
103
|
oveq2i |
|- ( CCfld gsum ( I X. { 0 } ) ) = ( CCfld gsum ( x e. I |-> 0 ) ) |
105 |
16 61
|
ax-mp |
|- CCfld e. Mnd |
106 |
14
|
gsumz |
|- ( ( CCfld e. Mnd /\ I e. V ) -> ( CCfld gsum ( x e. I |-> 0 ) ) = 0 ) |
107 |
105 106
|
mpan |
|- ( I e. V -> ( CCfld gsum ( x e. I |-> 0 ) ) = 0 ) |
108 |
107
|
adantr |
|- ( ( I e. V /\ X e. A ) -> ( CCfld gsum ( x e. I |-> 0 ) ) = 0 ) |
109 |
104 108
|
syl5eq |
|- ( ( I e. V /\ X e. A ) -> ( CCfld gsum ( I X. { 0 } ) ) = 0 ) |
110 |
102 109
|
eqtrd |
|- ( ( I e. V /\ X e. A ) -> ( H ` ( I X. { 0 } ) ) = 0 ) |
111 |
|
fveqeq2 |
|- ( X = ( I X. { 0 } ) -> ( ( H ` X ) = 0 <-> ( H ` ( I X. { 0 } ) ) = 0 ) ) |
112 |
110 111
|
syl5ibrcom |
|- ( ( I e. V /\ X e. A ) -> ( X = ( I X. { 0 } ) -> ( H ` X ) = 0 ) ) |
113 |
96 112
|
impbid |
|- ( ( I e. V /\ X e. A ) -> ( ( H ` X ) = 0 <-> X = ( I X. { 0 } ) ) ) |