| Step | Hyp | Ref | Expression | 
						
							| 1 |  | telfsum.1 |  |-  ( k = j -> A = B ) | 
						
							| 2 |  | telfsum.2 |  |-  ( k = ( j + 1 ) -> A = C ) | 
						
							| 3 |  | telfsum.3 |  |-  ( k = M -> A = D ) | 
						
							| 4 |  | telfsum.4 |  |-  ( k = ( N + 1 ) -> A = E ) | 
						
							| 5 |  | telfsum.5 |  |-  ( ph -> N e. ZZ ) | 
						
							| 6 |  | telfsum.6 |  |-  ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 7 |  | telfsum.7 |  |-  ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. CC ) | 
						
							| 8 |  | fzval3 |  |-  ( N e. ZZ -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) | 
						
							| 9 | 5 8 | syl |  |-  ( ph -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) | 
						
							| 10 | 9 | sumeq1d |  |-  ( ph -> sum_ j e. ( M ... N ) ( C - B ) = sum_ j e. ( M ..^ ( N + 1 ) ) ( C - B ) ) | 
						
							| 11 | 1 2 3 4 6 7 | telfsumo2 |  |-  ( ph -> sum_ j e. ( M ..^ ( N + 1 ) ) ( C - B ) = ( E - D ) ) | 
						
							| 12 | 10 11 | eqtrd |  |-  ( ph -> sum_ j e. ( M ... N ) ( C - B ) = ( E - D ) ) |