| Step |
Hyp |
Ref |
Expression |
| 1 |
|
telfsumo.1 |
|- ( k = j -> A = B ) |
| 2 |
|
telfsumo.2 |
|- ( k = ( j + 1 ) -> A = C ) |
| 3 |
|
telfsumo.3 |
|- ( k = M -> A = D ) |
| 4 |
|
telfsumo.4 |
|- ( k = N -> A = E ) |
| 5 |
|
telfsumo.5 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 6 |
|
telfsumo.6 |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
| 7 |
|
sum0 |
|- sum_ j e. (/) ( B - C ) = 0 |
| 8 |
3
|
eleq1d |
|- ( k = M -> ( A e. CC <-> D e. CC ) ) |
| 9 |
6
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 10 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 11 |
5 10
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 12 |
8 9 11
|
rspcdva |
|- ( ph -> D e. CC ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ N = M ) -> D e. CC ) |
| 14 |
13
|
subidd |
|- ( ( ph /\ N = M ) -> ( D - D ) = 0 ) |
| 15 |
7 14
|
eqtr4id |
|- ( ( ph /\ N = M ) -> sum_ j e. (/) ( B - C ) = ( D - D ) ) |
| 16 |
|
oveq2 |
|- ( N = M -> ( M ..^ N ) = ( M ..^ M ) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ N = M ) -> ( M ..^ N ) = ( M ..^ M ) ) |
| 18 |
|
fzo0 |
|- ( M ..^ M ) = (/) |
| 19 |
17 18
|
eqtrdi |
|- ( ( ph /\ N = M ) -> ( M ..^ N ) = (/) ) |
| 20 |
19
|
sumeq1d |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B - C ) = sum_ j e. (/) ( B - C ) ) |
| 21 |
|
eqeq1 |
|- ( k = N -> ( k = M <-> N = M ) ) |
| 22 |
4
|
eqeq1d |
|- ( k = N -> ( A = D <-> E = D ) ) |
| 23 |
21 22
|
imbi12d |
|- ( k = N -> ( ( k = M -> A = D ) <-> ( N = M -> E = D ) ) ) |
| 24 |
23 3
|
vtoclg |
|- ( N e. ( ZZ>= ` M ) -> ( N = M -> E = D ) ) |
| 25 |
24
|
imp |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> E = D ) |
| 26 |
5 25
|
sylan |
|- ( ( ph /\ N = M ) -> E = D ) |
| 27 |
26
|
oveq2d |
|- ( ( ph /\ N = M ) -> ( D - E ) = ( D - D ) ) |
| 28 |
15 20 27
|
3eqtr4d |
|- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B - C ) = ( D - E ) ) |
| 29 |
|
fzofi |
|- ( M ..^ N ) e. Fin |
| 30 |
29
|
a1i |
|- ( ph -> ( M ..^ N ) e. Fin ) |
| 31 |
1
|
eleq1d |
|- ( k = j -> ( A e. CC <-> B e. CC ) ) |
| 32 |
9
|
adantr |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> A. k e. ( M ... N ) A e. CC ) |
| 33 |
|
elfzofz |
|- ( j e. ( M ..^ N ) -> j e. ( M ... N ) ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> j e. ( M ... N ) ) |
| 35 |
31 32 34
|
rspcdva |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> B e. CC ) |
| 36 |
2
|
eleq1d |
|- ( k = ( j + 1 ) -> ( A e. CC <-> C e. CC ) ) |
| 37 |
|
fzofzp1 |
|- ( j e. ( M ..^ N ) -> ( j + 1 ) e. ( M ... N ) ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> ( j + 1 ) e. ( M ... N ) ) |
| 39 |
36 32 38
|
rspcdva |
|- ( ( ph /\ j e. ( M ..^ N ) ) -> C e. CC ) |
| 40 |
30 35 39
|
fsumsub |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B - C ) = ( sum_ j e. ( M ..^ N ) B - sum_ j e. ( M ..^ N ) C ) ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B - C ) = ( sum_ j e. ( M ..^ N ) B - sum_ j e. ( M ..^ N ) C ) ) |
| 42 |
1
|
cbvsumv |
|- sum_ k e. ( M ..^ N ) A = sum_ j e. ( M ..^ N ) B |
| 43 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 44 |
5 43
|
syl |
|- ( ph -> M e. ZZ ) |
| 45 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 46 |
44 45
|
sylan |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 47 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 48 |
5 47
|
syl |
|- ( ph -> N e. ZZ ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ZZ ) |
| 50 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 51 |
49 50
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 52 |
|
fzossfz |
|- ( M ..^ N ) C_ ( M ... N ) |
| 53 |
51 52
|
eqsstrrdi |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ... ( N - 1 ) ) C_ ( M ... N ) ) |
| 54 |
53
|
sselda |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ... N ) ) |
| 55 |
6
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... N ) ) -> A e. CC ) |
| 56 |
54 55
|
syldan |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
| 57 |
46 56 3
|
fsum1p |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) A = ( D + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) ) |
| 58 |
51
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) A = sum_ k e. ( M ... ( N - 1 ) ) A ) |
| 59 |
|
fzoval |
|- ( N e. ZZ -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 60 |
49 59
|
syl |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 61 |
60
|
sumeq1d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) A = sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) |
| 62 |
61
|
oveq2d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) = ( D + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) ) |
| 63 |
57 58 62
|
3eqtr4d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) A = ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 64 |
42 63
|
eqtr3id |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) B = ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 65 |
|
simpr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
| 66 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 67 |
44 66
|
syl |
|- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 68 |
67
|
sselda |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
| 69 |
68 6
|
syldan |
|- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> A e. CC ) |
| 70 |
69
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> A e. CC ) |
| 71 |
65 70 4
|
fsumm1 |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) A = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) ) |
| 72 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 73 |
44
|
peano2zd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
| 74 |
72 73 48 69 2
|
fsumshftm |
|- ( ph -> sum_ k e. ( ( M + 1 ) ... N ) A = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) C ) |
| 75 |
44
|
zcnd |
|- ( ph -> M e. CC ) |
| 76 |
|
ax-1cn |
|- 1 e. CC |
| 77 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
| 78 |
75 76 77
|
sylancl |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 79 |
78
|
oveq1d |
|- ( ph -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ... ( N - 1 ) ) ) |
| 80 |
48 50
|
syl |
|- ( ph -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 81 |
79 80
|
eqtr4d |
|- ( ph -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ..^ N ) ) |
| 82 |
81
|
sumeq1d |
|- ( ph -> sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) C = sum_ j e. ( M ..^ N ) C ) |
| 83 |
74 82
|
eqtrd |
|- ( ph -> sum_ k e. ( ( M + 1 ) ... N ) A = sum_ j e. ( M ..^ N ) C ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) A = sum_ j e. ( M ..^ N ) C ) |
| 85 |
48 59
|
syl |
|- ( ph -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 86 |
85
|
sumeq1d |
|- ( ph -> sum_ k e. ( ( M + 1 ) ..^ N ) A = sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) |
| 87 |
86
|
oveq1d |
|- ( ph -> ( sum_ k e. ( ( M + 1 ) ..^ N ) A + E ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) ) |
| 88 |
|
fzofi |
|- ( ( M + 1 ) ..^ N ) e. Fin |
| 89 |
88
|
a1i |
|- ( ph -> ( ( M + 1 ) ..^ N ) e. Fin ) |
| 90 |
|
elfzofz |
|- ( k e. ( ( M + 1 ) ..^ N ) -> k e. ( ( M + 1 ) ... N ) ) |
| 91 |
90 69
|
sylan2 |
|- ( ( ph /\ k e. ( ( M + 1 ) ..^ N ) ) -> A e. CC ) |
| 92 |
89 91
|
fsumcl |
|- ( ph -> sum_ k e. ( ( M + 1 ) ..^ N ) A e. CC ) |
| 93 |
4
|
eleq1d |
|- ( k = N -> ( A e. CC <-> E e. CC ) ) |
| 94 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 95 |
5 94
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 96 |
93 9 95
|
rspcdva |
|- ( ph -> E e. CC ) |
| 97 |
92 96
|
addcomd |
|- ( ph -> ( sum_ k e. ( ( M + 1 ) ..^ N ) A + E ) = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 98 |
87 97
|
eqtr3d |
|- ( ph -> ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 99 |
98
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 100 |
71 84 99
|
3eqtr3d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) C = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 101 |
64 100
|
oveq12d |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) B - sum_ j e. ( M ..^ N ) C ) = ( ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) - ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) ) |
| 102 |
12 96 92
|
pnpcan2d |
|- ( ph -> ( ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) - ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) = ( D - E ) ) |
| 103 |
102
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) - ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) = ( D - E ) ) |
| 104 |
41 101 103
|
3eqtrd |
|- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B - C ) = ( D - E ) ) |
| 105 |
|
uzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 106 |
5 105
|
syl |
|- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 107 |
28 104 106
|
mpjaodan |
|- ( ph -> sum_ j e. ( M ..^ N ) ( B - C ) = ( D - E ) ) |