Step |
Hyp |
Ref |
Expression |
1 |
|
telgsum.b |
|- B = ( Base ` G ) |
2 |
|
telgsum.g |
|- ( ph -> G e. Abel ) |
3 |
|
telgsum.m |
|- .- = ( -g ` G ) |
4 |
|
telgsum.0 |
|- .0. = ( 0g ` G ) |
5 |
|
telgsum.f |
|- ( ph -> A. k e. NN0 A e. B ) |
6 |
|
telgsum.s |
|- ( ph -> S e. NN0 ) |
7 |
|
telgsum.u |
|- ( ph -> A. k e. NN0 ( S < k -> A = .0. ) ) |
8 |
|
telgsum.c |
|- ( k = i -> A = C ) |
9 |
|
telgsum.d |
|- ( k = ( i + 1 ) -> A = D ) |
10 |
|
telgsum.e |
|- ( k = 0 -> A = E ) |
11 |
|
simpr |
|- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
12 |
8
|
adantl |
|- ( ( ( ph /\ i e. NN0 ) /\ k = i ) -> A = C ) |
13 |
11 12
|
csbied |
|- ( ( ph /\ i e. NN0 ) -> [_ i / k ]_ A = C ) |
14 |
13
|
eqcomd |
|- ( ( ph /\ i e. NN0 ) -> C = [_ i / k ]_ A ) |
15 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
16 |
15
|
adantl |
|- ( ( ph /\ i e. NN0 ) -> ( i + 1 ) e. NN0 ) |
17 |
9
|
adantl |
|- ( ( ( ph /\ i e. NN0 ) /\ k = ( i + 1 ) ) -> A = D ) |
18 |
16 17
|
csbied |
|- ( ( ph /\ i e. NN0 ) -> [_ ( i + 1 ) / k ]_ A = D ) |
19 |
18
|
eqcomd |
|- ( ( ph /\ i e. NN0 ) -> D = [_ ( i + 1 ) / k ]_ A ) |
20 |
14 19
|
oveq12d |
|- ( ( ph /\ i e. NN0 ) -> ( C .- D ) = ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) |
21 |
20
|
mpteq2dva |
|- ( ph -> ( i e. NN0 |-> ( C .- D ) ) = ( i e. NN0 |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) |
22 |
21
|
oveq2d |
|- ( ph -> ( G gsum ( i e. NN0 |-> ( C .- D ) ) ) = ( G gsum ( i e. NN0 |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) ) |
23 |
1 2 3 4 5 6 7
|
telgsums |
|- ( ph -> ( G gsum ( i e. NN0 |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) = [_ 0 / k ]_ A ) |
24 |
|
c0ex |
|- 0 e. _V |
25 |
24
|
a1i |
|- ( ph -> 0 e. _V ) |
26 |
10
|
adantl |
|- ( ( ph /\ k = 0 ) -> A = E ) |
27 |
25 26
|
csbied |
|- ( ph -> [_ 0 / k ]_ A = E ) |
28 |
22 23 27
|
3eqtrd |
|- ( ph -> ( G gsum ( i e. NN0 |-> ( C .- D ) ) ) = E ) |