| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							telgsum.b | 
							 |-  B = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							telgsum.g | 
							 |-  ( ph -> G e. Abel )  | 
						
						
							| 3 | 
							
								
							 | 
							telgsum.m | 
							 |-  .- = ( -g ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							telgsum.0 | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							telgsum.f | 
							 |-  ( ph -> A. k e. NN0 A e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							telgsum.s | 
							 |-  ( ph -> S e. NN0 )  | 
						
						
							| 7 | 
							
								
							 | 
							telgsum.u | 
							 |-  ( ph -> A. k e. NN0 ( S < k -> A = .0. ) )  | 
						
						
							| 8 | 
							
								
							 | 
							telgsum.c | 
							 |-  ( k = i -> A = C )  | 
						
						
							| 9 | 
							
								
							 | 
							telgsum.d | 
							 |-  ( k = ( i + 1 ) -> A = D )  | 
						
						
							| 10 | 
							
								
							 | 
							telgsum.e | 
							 |-  ( k = 0 -> A = E )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ i e. NN0 ) -> i e. NN0 )  | 
						
						
							| 12 | 
							
								8
							 | 
							adantl | 
							 |-  ( ( ( ph /\ i e. NN0 ) /\ k = i ) -> A = C )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							csbied | 
							 |-  ( ( ph /\ i e. NN0 ) -> [_ i / k ]_ A = C )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqcomd | 
							 |-  ( ( ph /\ i e. NN0 ) -> C = [_ i / k ]_ A )  | 
						
						
							| 15 | 
							
								
							 | 
							peano2nn0 | 
							 |-  ( i e. NN0 -> ( i + 1 ) e. NN0 )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							 |-  ( ( ph /\ i e. NN0 ) -> ( i + 1 ) e. NN0 )  | 
						
						
							| 17 | 
							
								9
							 | 
							adantl | 
							 |-  ( ( ( ph /\ i e. NN0 ) /\ k = ( i + 1 ) ) -> A = D )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							csbied | 
							 |-  ( ( ph /\ i e. NN0 ) -> [_ ( i + 1 ) / k ]_ A = D )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcomd | 
							 |-  ( ( ph /\ i e. NN0 ) -> D = [_ ( i + 1 ) / k ]_ A )  | 
						
						
							| 20 | 
							
								14 19
							 | 
							oveq12d | 
							 |-  ( ( ph /\ i e. NN0 ) -> ( C .- D ) = ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( i e. NN0 |-> ( C .- D ) ) = ( i e. NN0 |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq2d | 
							 |-  ( ph -> ( G gsum ( i e. NN0 |-> ( C .- D ) ) ) = ( G gsum ( i e. NN0 |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) )  | 
						
						
							| 23 | 
							
								1 2 3 4 5 6 7
							 | 
							telgsums | 
							 |-  ( ph -> ( G gsum ( i e. NN0 |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) = [_ 0 / k ]_ A )  | 
						
						
							| 24 | 
							
								
							 | 
							c0ex | 
							 |-  0 e. _V  | 
						
						
							| 25 | 
							
								24
							 | 
							a1i | 
							 |-  ( ph -> 0 e. _V )  | 
						
						
							| 26 | 
							
								10
							 | 
							adantl | 
							 |-  ( ( ph /\ k = 0 ) -> A = E )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							csbied | 
							 |-  ( ph -> [_ 0 / k ]_ A = E )  | 
						
						
							| 28 | 
							
								22 23 27
							 | 
							3eqtrd | 
							 |-  ( ph -> ( G gsum ( i e. NN0 |-> ( C .- D ) ) ) = E )  |