Step |
Hyp |
Ref |
Expression |
1 |
|
telgsumfz.b |
|- B = ( Base ` G ) |
2 |
|
telgsumfz.g |
|- ( ph -> G e. Abel ) |
3 |
|
telgsumfz.m |
|- .- = ( -g ` G ) |
4 |
|
telgsumfz.n |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
5 |
|
telgsumfz.f |
|- ( ph -> A. k e. ( M ... ( N + 1 ) ) A e. B ) |
6 |
|
telgsumfz.l |
|- ( k = i -> A = L ) |
7 |
|
telgsumfz.c |
|- ( k = ( i + 1 ) -> A = C ) |
8 |
|
telgsumfz.d |
|- ( k = M -> A = D ) |
9 |
|
telgsumfz.e |
|- ( k = ( N + 1 ) -> A = E ) |
10 |
|
simpr |
|- ( ( ph /\ i e. ( M ... N ) ) -> i e. ( M ... N ) ) |
11 |
6
|
adantl |
|- ( ( ( ph /\ i e. ( M ... N ) ) /\ k = i ) -> A = L ) |
12 |
10 11
|
csbied |
|- ( ( ph /\ i e. ( M ... N ) ) -> [_ i / k ]_ A = L ) |
13 |
12
|
eqcomd |
|- ( ( ph /\ i e. ( M ... N ) ) -> L = [_ i / k ]_ A ) |
14 |
|
ovexd |
|- ( ( ph /\ i e. ( M ... N ) ) -> ( i + 1 ) e. _V ) |
15 |
7
|
adantl |
|- ( ( ( ph /\ i e. ( M ... N ) ) /\ k = ( i + 1 ) ) -> A = C ) |
16 |
14 15
|
csbied |
|- ( ( ph /\ i e. ( M ... N ) ) -> [_ ( i + 1 ) / k ]_ A = C ) |
17 |
16
|
eqcomd |
|- ( ( ph /\ i e. ( M ... N ) ) -> C = [_ ( i + 1 ) / k ]_ A ) |
18 |
13 17
|
oveq12d |
|- ( ( ph /\ i e. ( M ... N ) ) -> ( L .- C ) = ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) |
19 |
18
|
mpteq2dva |
|- ( ph -> ( i e. ( M ... N ) |-> ( L .- C ) ) = ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) |
20 |
19
|
oveq2d |
|- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( L .- C ) ) ) = ( G gsum ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) ) |
21 |
1 2 3 4 5
|
telgsumfzs |
|- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) = ( [_ M / k ]_ A .- [_ ( N + 1 ) / k ]_ A ) ) |
22 |
4
|
elfvexd |
|- ( ph -> M e. _V ) |
23 |
8
|
adantl |
|- ( ( ph /\ k = M ) -> A = D ) |
24 |
22 23
|
csbied |
|- ( ph -> [_ M / k ]_ A = D ) |
25 |
|
ovexd |
|- ( ph -> ( N + 1 ) e. _V ) |
26 |
9
|
adantl |
|- ( ( ph /\ k = ( N + 1 ) ) -> A = E ) |
27 |
25 26
|
csbied |
|- ( ph -> [_ ( N + 1 ) / k ]_ A = E ) |
28 |
24 27
|
oveq12d |
|- ( ph -> ( [_ M / k ]_ A .- [_ ( N + 1 ) / k ]_ A ) = ( D .- E ) ) |
29 |
20 21 28
|
3eqtrd |
|- ( ph -> ( G gsum ( i e. ( M ... N ) |-> ( L .- C ) ) ) = ( D .- E ) ) |