Description: Reverse distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tendospd.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| tendosp.p | |- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
||
| Assertion | tendospdi2 | |- ( ( U e. E /\ V e. E /\ F e. T ) -> ( ( U P V ) ` F ) = ( ( U ` F ) o. ( V ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendospd.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| 2 | tendosp.p | |- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
|
| 3 | 2 1 | tendopl2 | |- ( ( U e. E /\ V e. E /\ F e. T ) -> ( ( U P V ) ` F ) = ( ( U ` F ) o. ( V ` F ) ) ) |