| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termchom.c |
|- ( ph -> C e. TermCat ) |
| 2 |
|
termchom.b |
|- B = ( Base ` C ) |
| 3 |
|
termchom.x |
|- ( ph -> X e. B ) |
| 4 |
|
termchom.y |
|- ( ph -> Y e. B ) |
| 5 |
|
termchom.h |
|- H = ( Hom ` C ) |
| 6 |
|
termchom.i |
|- .1. = ( Id ` C ) |
| 7 |
1 2 3 4 5
|
termchomn0 |
|- ( ph -> -. ( X H Y ) = (/) ) |
| 8 |
|
neq0 |
|- ( -. ( X H Y ) = (/) <-> E. f f e. ( X H Y ) ) |
| 9 |
7 8
|
sylib |
|- ( ph -> E. f f e. ( X H Y ) ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ f e. ( X H Y ) ) -> X e. B ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ f e. ( X H Y ) ) -> Y e. B ) |
| 12 |
|
simpr |
|- ( ( ph /\ f e. ( X H Y ) ) -> f e. ( X H Y ) ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ f e. ( X H Y ) ) -> C e. TermCat ) |
| 14 |
13
|
termcthind |
|- ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) |
| 15 |
10 11 12 2 5 14
|
thinchom |
|- ( ( ph /\ f e. ( X H Y ) ) -> ( X H Y ) = { f } ) |
| 16 |
13 2 10 11 5 12 6
|
termcid |
|- ( ( ph /\ f e. ( X H Y ) ) -> f = ( .1. ` X ) ) |
| 17 |
16
|
sneqd |
|- ( ( ph /\ f e. ( X H Y ) ) -> { f } = { ( .1. ` X ) } ) |
| 18 |
15 17
|
eqtrd |
|- ( ( ph /\ f e. ( X H Y ) ) -> ( X H Y ) = { ( .1. ` X ) } ) |
| 19 |
9 18
|
exlimddv |
|- ( ph -> ( X H Y ) = { ( .1. ` X ) } ) |