Metamath Proof Explorer


Theorem termchom

Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses termchom.c
|- ( ph -> C e. TermCat )
termchom.b
|- B = ( Base ` C )
termchom.x
|- ( ph -> X e. B )
termchom.y
|- ( ph -> Y e. B )
termchom.h
|- H = ( Hom ` C )
termchom.i
|- .1. = ( Id ` C )
Assertion termchom
|- ( ph -> ( X H Y ) = { ( .1. ` X ) } )

Proof

Step Hyp Ref Expression
1 termchom.c
 |-  ( ph -> C e. TermCat )
2 termchom.b
 |-  B = ( Base ` C )
3 termchom.x
 |-  ( ph -> X e. B )
4 termchom.y
 |-  ( ph -> Y e. B )
5 termchom.h
 |-  H = ( Hom ` C )
6 termchom.i
 |-  .1. = ( Id ` C )
7 1 2 3 4 5 termchomn0
 |-  ( ph -> -. ( X H Y ) = (/) )
8 neq0
 |-  ( -. ( X H Y ) = (/) <-> E. f f e. ( X H Y ) )
9 7 8 sylib
 |-  ( ph -> E. f f e. ( X H Y ) )
10 3 adantr
 |-  ( ( ph /\ f e. ( X H Y ) ) -> X e. B )
11 4 adantr
 |-  ( ( ph /\ f e. ( X H Y ) ) -> Y e. B )
12 simpr
 |-  ( ( ph /\ f e. ( X H Y ) ) -> f e. ( X H Y ) )
13 1 adantr
 |-  ( ( ph /\ f e. ( X H Y ) ) -> C e. TermCat )
14 13 termcthind
 |-  ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat )
15 10 11 12 2 5 14 thinchom
 |-  ( ( ph /\ f e. ( X H Y ) ) -> ( X H Y ) = { f } )
16 13 2 10 11 5 12 6 termcid
 |-  ( ( ph /\ f e. ( X H Y ) ) -> f = ( .1. ` X ) )
17 16 sneqd
 |-  ( ( ph /\ f e. ( X H Y ) ) -> { f } = { ( .1. ` X ) } )
18 15 17 eqtrd
 |-  ( ( ph /\ f e. ( X H Y ) ) -> ( X H Y ) = { ( .1. ` X ) } )
19 9 18 exlimddv
 |-  ( ph -> ( X H Y ) = { ( .1. ` X ) } )