| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 2 |  | initoval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | initoval.h |  |-  H = ( Hom ` C ) | 
						
							| 4 |  | df-termo |  |-  TermO = ( c e. Cat |-> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( b ( Hom ` c ) a ) } ) | 
						
							| 5 |  | fveq2 |  |-  ( c = C -> ( Base ` c ) = ( Base ` C ) ) | 
						
							| 6 | 5 2 | eqtr4di |  |-  ( c = C -> ( Base ` c ) = B ) | 
						
							| 7 |  | fveq2 |  |-  ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) | 
						
							| 8 | 7 3 | eqtr4di |  |-  ( c = C -> ( Hom ` c ) = H ) | 
						
							| 9 | 8 | oveqd |  |-  ( c = C -> ( b ( Hom ` c ) a ) = ( b H a ) ) | 
						
							| 10 | 9 | eleq2d |  |-  ( c = C -> ( h e. ( b ( Hom ` c ) a ) <-> h e. ( b H a ) ) ) | 
						
							| 11 | 10 | eubidv |  |-  ( c = C -> ( E! h h e. ( b ( Hom ` c ) a ) <-> E! h h e. ( b H a ) ) ) | 
						
							| 12 | 6 11 | raleqbidv |  |-  ( c = C -> ( A. b e. ( Base ` c ) E! h h e. ( b ( Hom ` c ) a ) <-> A. b e. B E! h h e. ( b H a ) ) ) | 
						
							| 13 | 6 12 | rabeqbidv |  |-  ( c = C -> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( b ( Hom ` c ) a ) } = { a e. B | A. b e. B E! h h e. ( b H a ) } ) | 
						
							| 14 | 2 | fvexi |  |-  B e. _V | 
						
							| 15 | 14 | rabex |  |-  { a e. B | A. b e. B E! h h e. ( b H a ) } e. _V | 
						
							| 16 | 15 | a1i |  |-  ( ph -> { a e. B | A. b e. B E! h h e. ( b H a ) } e. _V ) | 
						
							| 17 | 4 13 1 16 | fvmptd3 |  |-  ( ph -> ( TermO ` C ) = { a e. B | A. b e. B E! h h e. ( b H a ) } ) |