Step |
Hyp |
Ref |
Expression |
1 |
|
tfindes.1 |
|- [. (/) / x ]. ph |
2 |
|
tfindes.2 |
|- ( x e. On -> ( ph -> [. suc x / x ]. ph ) ) |
3 |
|
tfindes.3 |
|- ( Lim y -> ( A. x e. y ph -> [. y / x ]. ph ) ) |
4 |
|
dfsbcq |
|- ( y = (/) -> ( [. y / x ]. ph <-> [. (/) / x ]. ph ) ) |
5 |
|
dfsbcq |
|- ( y = z -> ( [. y / x ]. ph <-> [. z / x ]. ph ) ) |
6 |
|
dfsbcq |
|- ( y = suc z -> ( [. y / x ]. ph <-> [. suc z / x ]. ph ) ) |
7 |
|
sbceq2a |
|- ( y = x -> ( [. y / x ]. ph <-> ph ) ) |
8 |
|
nfv |
|- F/ x z e. On |
9 |
|
nfsbc1v |
|- F/ x [. z / x ]. ph |
10 |
|
nfsbc1v |
|- F/ x [. suc z / x ]. ph |
11 |
9 10
|
nfim |
|- F/ x ( [. z / x ]. ph -> [. suc z / x ]. ph ) |
12 |
8 11
|
nfim |
|- F/ x ( z e. On -> ( [. z / x ]. ph -> [. suc z / x ]. ph ) ) |
13 |
|
eleq1w |
|- ( x = z -> ( x e. On <-> z e. On ) ) |
14 |
|
sbceq1a |
|- ( x = z -> ( ph <-> [. z / x ]. ph ) ) |
15 |
|
suceq |
|- ( x = z -> suc x = suc z ) |
16 |
15
|
sbceq1d |
|- ( x = z -> ( [. suc x / x ]. ph <-> [. suc z / x ]. ph ) ) |
17 |
14 16
|
imbi12d |
|- ( x = z -> ( ( ph -> [. suc x / x ]. ph ) <-> ( [. z / x ]. ph -> [. suc z / x ]. ph ) ) ) |
18 |
13 17
|
imbi12d |
|- ( x = z -> ( ( x e. On -> ( ph -> [. suc x / x ]. ph ) ) <-> ( z e. On -> ( [. z / x ]. ph -> [. suc z / x ]. ph ) ) ) ) |
19 |
12 18 2
|
chvarfv |
|- ( z e. On -> ( [. z / x ]. ph -> [. suc z / x ]. ph ) ) |
20 |
|
cbvralsvw |
|- ( A. x e. y ph <-> A. z e. y [ z / x ] ph ) |
21 |
|
sbsbc |
|- ( [ z / x ] ph <-> [. z / x ]. ph ) |
22 |
21
|
ralbii |
|- ( A. z e. y [ z / x ] ph <-> A. z e. y [. z / x ]. ph ) |
23 |
20 22
|
bitri |
|- ( A. x e. y ph <-> A. z e. y [. z / x ]. ph ) |
24 |
23 3
|
syl5bir |
|- ( Lim y -> ( A. z e. y [. z / x ]. ph -> [. y / x ]. ph ) ) |
25 |
4 5 6 7 1 19 24
|
tfinds |
|- ( x e. On -> ph ) |