| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfinds.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
| 2 |
|
tfinds.2 |
|- ( x = y -> ( ph <-> ch ) ) |
| 3 |
|
tfinds.3 |
|- ( x = suc y -> ( ph <-> th ) ) |
| 4 |
|
tfinds.4 |
|- ( x = A -> ( ph <-> ta ) ) |
| 5 |
|
tfinds.5 |
|- ps |
| 6 |
|
tfinds.6 |
|- ( y e. On -> ( ch -> th ) ) |
| 7 |
|
tfinds.7 |
|- ( Lim x -> ( A. y e. x ch -> ph ) ) |
| 8 |
|
dflim3 |
|- ( Lim x <-> ( Ord x /\ -. ( x = (/) \/ E. y e. On x = suc y ) ) ) |
| 9 |
8
|
notbii |
|- ( -. Lim x <-> -. ( Ord x /\ -. ( x = (/) \/ E. y e. On x = suc y ) ) ) |
| 10 |
|
iman |
|- ( ( Ord x -> ( x = (/) \/ E. y e. On x = suc y ) ) <-> -. ( Ord x /\ -. ( x = (/) \/ E. y e. On x = suc y ) ) ) |
| 11 |
|
eloni |
|- ( x e. On -> Ord x ) |
| 12 |
|
pm2.27 |
|- ( Ord x -> ( ( Ord x -> ( x = (/) \/ E. y e. On x = suc y ) ) -> ( x = (/) \/ E. y e. On x = suc y ) ) ) |
| 13 |
11 12
|
syl |
|- ( x e. On -> ( ( Ord x -> ( x = (/) \/ E. y e. On x = suc y ) ) -> ( x = (/) \/ E. y e. On x = suc y ) ) ) |
| 14 |
5 1
|
mpbiri |
|- ( x = (/) -> ph ) |
| 15 |
14
|
a1d |
|- ( x = (/) -> ( A. y e. x ch -> ph ) ) |
| 16 |
|
nfra1 |
|- F/ y A. y e. x ch |
| 17 |
|
nfv |
|- F/ y ph |
| 18 |
16 17
|
nfim |
|- F/ y ( A. y e. x ch -> ph ) |
| 19 |
|
vex |
|- y e. _V |
| 20 |
19
|
sucid |
|- y e. suc y |
| 21 |
2
|
rspcv |
|- ( y e. suc y -> ( A. x e. suc y ph -> ch ) ) |
| 22 |
20 21
|
ax-mp |
|- ( A. x e. suc y ph -> ch ) |
| 23 |
22 6
|
syl5 |
|- ( y e. On -> ( A. x e. suc y ph -> th ) ) |
| 24 |
|
raleq |
|- ( x = suc y -> ( A. z e. x [ z / x ] ph <-> A. z e. suc y [ z / x ] ph ) ) |
| 25 |
|
nfv |
|- F/ x ch |
| 26 |
25 2
|
sbiev |
|- ( [ y / x ] ph <-> ch ) |
| 27 |
|
sbequ |
|- ( y = z -> ( [ y / x ] ph <-> [ z / x ] ph ) ) |
| 28 |
26 27
|
bitr3id |
|- ( y = z -> ( ch <-> [ z / x ] ph ) ) |
| 29 |
28
|
cbvralvw |
|- ( A. y e. x ch <-> A. z e. x [ z / x ] ph ) |
| 30 |
|
cbvralsvw |
|- ( A. x e. suc y ph <-> A. z e. suc y [ z / x ] ph ) |
| 31 |
24 29 30
|
3bitr4g |
|- ( x = suc y -> ( A. y e. x ch <-> A. x e. suc y ph ) ) |
| 32 |
31
|
imbi1d |
|- ( x = suc y -> ( ( A. y e. x ch -> th ) <-> ( A. x e. suc y ph -> th ) ) ) |
| 33 |
23 32
|
syl5ibrcom |
|- ( y e. On -> ( x = suc y -> ( A. y e. x ch -> th ) ) ) |
| 34 |
3
|
biimprd |
|- ( x = suc y -> ( th -> ph ) ) |
| 35 |
34
|
a1i |
|- ( y e. On -> ( x = suc y -> ( th -> ph ) ) ) |
| 36 |
33 35
|
syldd |
|- ( y e. On -> ( x = suc y -> ( A. y e. x ch -> ph ) ) ) |
| 37 |
18 36
|
rexlimi |
|- ( E. y e. On x = suc y -> ( A. y e. x ch -> ph ) ) |
| 38 |
15 37
|
jaoi |
|- ( ( x = (/) \/ E. y e. On x = suc y ) -> ( A. y e. x ch -> ph ) ) |
| 39 |
13 38
|
syl6 |
|- ( x e. On -> ( ( Ord x -> ( x = (/) \/ E. y e. On x = suc y ) ) -> ( A. y e. x ch -> ph ) ) ) |
| 40 |
10 39
|
biimtrrid |
|- ( x e. On -> ( -. ( Ord x /\ -. ( x = (/) \/ E. y e. On x = suc y ) ) -> ( A. y e. x ch -> ph ) ) ) |
| 41 |
9 40
|
biimtrid |
|- ( x e. On -> ( -. Lim x -> ( A. y e. x ch -> ph ) ) ) |
| 42 |
41 7
|
pm2.61d2 |
|- ( x e. On -> ( A. y e. x ch -> ph ) ) |
| 43 |
2 4 42
|
tfis3 |
|- ( A e. On -> ta ) |