Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfis2f.1 | |- F/ x ps |
|
| tfis2f.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
| tfis2f.3 | |- ( x e. On -> ( A. y e. x ps -> ph ) ) |
||
| Assertion | tfis2f | |- ( x e. On -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis2f.1 | |- F/ x ps |
|
| 2 | tfis2f.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 3 | tfis2f.3 | |- ( x e. On -> ( A. y e. x ps -> ph ) ) |
|
| 4 | 1 2 | sbiev | |- ( [ y / x ] ph <-> ps ) |
| 5 | 4 | ralbii | |- ( A. y e. x [ y / x ] ph <-> A. y e. x ps ) |
| 6 | 5 3 | biimtrid | |- ( x e. On -> ( A. y e. x [ y / x ] ph -> ph ) ) |
| 7 | 6 | tfis | |- ( x e. On -> ph ) |