Metamath Proof Explorer


Theorem tfis2f

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypotheses tfis2f.1
|- F/ x ps
tfis2f.2
|- ( x = y -> ( ph <-> ps ) )
tfis2f.3
|- ( x e. On -> ( A. y e. x ps -> ph ) )
Assertion tfis2f
|- ( x e. On -> ph )

Proof

Step Hyp Ref Expression
1 tfis2f.1
 |-  F/ x ps
2 tfis2f.2
 |-  ( x = y -> ( ph <-> ps ) )
3 tfis2f.3
 |-  ( x e. On -> ( A. y e. x ps -> ph ) )
4 1 2 sbiev
 |-  ( [ y / x ] ph <-> ps )
5 4 ralbii
 |-  ( A. y e. x [ y / x ] ph <-> A. y e. x ps )
6 5 3 syl5bi
 |-  ( x e. On -> ( A. y e. x [ y / x ] ph -> ph ) )
7 6 tfis
 |-  ( x e. On -> ph )