Metamath Proof Explorer


Theorem tfis3

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003)

Ref Expression
Hypotheses tfis3.1
|- ( x = y -> ( ph <-> ps ) )
tfis3.2
|- ( x = A -> ( ph <-> ch ) )
tfis3.3
|- ( x e. On -> ( A. y e. x ps -> ph ) )
Assertion tfis3
|- ( A e. On -> ch )

Proof

Step Hyp Ref Expression
1 tfis3.1
 |-  ( x = y -> ( ph <-> ps ) )
2 tfis3.2
 |-  ( x = A -> ( ph <-> ch ) )
3 tfis3.3
 |-  ( x e. On -> ( A. y e. x ps -> ph ) )
4 1 3 tfis2
 |-  ( x e. On -> ph )
5 2 4 vtoclga
 |-  ( A e. On -> ch )