Step |
Hyp |
Ref |
Expression |
1 |
|
tfisi.a |
|- ( ph -> A e. V ) |
2 |
|
tfisi.b |
|- ( ph -> T e. On ) |
3 |
|
tfisi.c |
|- ( ( ph /\ ( R e. On /\ R C_ T ) /\ A. y ( S e. R -> ch ) ) -> ps ) |
4 |
|
tfisi.d |
|- ( x = y -> ( ps <-> ch ) ) |
5 |
|
tfisi.e |
|- ( x = A -> ( ps <-> th ) ) |
6 |
|
tfisi.f |
|- ( x = y -> R = S ) |
7 |
|
tfisi.g |
|- ( x = A -> R = T ) |
8 |
|
ssid |
|- T C_ T |
9 |
|
eqid |
|- T = T |
10 |
|
eqeq2 |
|- ( z = w -> ( R = z <-> R = w ) ) |
11 |
|
sseq1 |
|- ( z = w -> ( z C_ T <-> w C_ T ) ) |
12 |
11
|
anbi2d |
|- ( z = w -> ( ( ph /\ z C_ T ) <-> ( ph /\ w C_ T ) ) ) |
13 |
12
|
imbi1d |
|- ( z = w -> ( ( ( ph /\ z C_ T ) -> ps ) <-> ( ( ph /\ w C_ T ) -> ps ) ) ) |
14 |
10 13
|
imbi12d |
|- ( z = w -> ( ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) ) ) |
15 |
14
|
albidv |
|- ( z = w -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. x ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) ) ) |
16 |
6
|
eqeq1d |
|- ( x = y -> ( R = w <-> S = w ) ) |
17 |
4
|
imbi2d |
|- ( x = y -> ( ( ( ph /\ w C_ T ) -> ps ) <-> ( ( ph /\ w C_ T ) -> ch ) ) ) |
18 |
16 17
|
imbi12d |
|- ( x = y -> ( ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) <-> ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) ) |
19 |
18
|
cbvalvw |
|- ( A. x ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) <-> A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) |
20 |
15 19
|
bitrdi |
|- ( z = w -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) ) |
21 |
|
eqeq2 |
|- ( z = T -> ( R = z <-> R = T ) ) |
22 |
|
sseq1 |
|- ( z = T -> ( z C_ T <-> T C_ T ) ) |
23 |
22
|
anbi2d |
|- ( z = T -> ( ( ph /\ z C_ T ) <-> ( ph /\ T C_ T ) ) ) |
24 |
23
|
imbi1d |
|- ( z = T -> ( ( ( ph /\ z C_ T ) -> ps ) <-> ( ( ph /\ T C_ T ) -> ps ) ) ) |
25 |
21 24
|
imbi12d |
|- ( z = T -> ( ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) ) |
26 |
25
|
albidv |
|- ( z = T -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) ) |
27 |
|
simp3l |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ph ) |
28 |
|
simp2 |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R = z ) |
29 |
|
simp1l |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> z e. On ) |
30 |
28 29
|
eqeltrd |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R e. On ) |
31 |
|
simp3r |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> z C_ T ) |
32 |
28 31
|
eqsstrd |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R C_ T ) |
33 |
|
simpl3l |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> ph ) |
34 |
|
simpl1l |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> z e. On ) |
35 |
|
simpr |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R e. R ) |
36 |
|
simpl2 |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> R = z ) |
37 |
35 36
|
eleqtrd |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R e. z ) |
38 |
|
onelss |
|- ( z e. On -> ( [_ v / x ]_ R e. z -> [_ v / x ]_ R C_ z ) ) |
39 |
34 37 38
|
sylc |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R C_ z ) |
40 |
|
simpl3r |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> z C_ T ) |
41 |
39 40
|
sstrd |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R C_ T ) |
42 |
|
eqeq2 |
|- ( w = [_ v / x ]_ R -> ( S = w <-> S = [_ v / x ]_ R ) ) |
43 |
|
sseq1 |
|- ( w = [_ v / x ]_ R -> ( w C_ T <-> [_ v / x ]_ R C_ T ) ) |
44 |
43
|
anbi2d |
|- ( w = [_ v / x ]_ R -> ( ( ph /\ w C_ T ) <-> ( ph /\ [_ v / x ]_ R C_ T ) ) ) |
45 |
44
|
imbi1d |
|- ( w = [_ v / x ]_ R -> ( ( ( ph /\ w C_ T ) -> ch ) <-> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) |
46 |
42 45
|
imbi12d |
|- ( w = [_ v / x ]_ R -> ( ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) <-> ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) ) |
47 |
46
|
albidv |
|- ( w = [_ v / x ]_ R -> ( A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) <-> A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) ) |
48 |
|
simpl1r |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) |
49 |
47 48 37
|
rspcdva |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) |
50 |
|
eqidd |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R = [_ v / x ]_ R ) |
51 |
|
nfcv |
|- F/_ x y |
52 |
|
nfcv |
|- F/_ x S |
53 |
51 52 6
|
csbhypf |
|- ( v = y -> [_ v / x ]_ R = S ) |
54 |
53
|
eqcomd |
|- ( v = y -> S = [_ v / x ]_ R ) |
55 |
54
|
equcoms |
|- ( y = v -> S = [_ v / x ]_ R ) |
56 |
55
|
eqeq1d |
|- ( y = v -> ( S = [_ v / x ]_ R <-> [_ v / x ]_ R = [_ v / x ]_ R ) ) |
57 |
|
nfv |
|- F/ x ch |
58 |
57 4
|
sbhypf |
|- ( v = y -> ( [ v / x ] ps <-> ch ) ) |
59 |
58
|
bicomd |
|- ( v = y -> ( ch <-> [ v / x ] ps ) ) |
60 |
59
|
equcoms |
|- ( y = v -> ( ch <-> [ v / x ] ps ) ) |
61 |
60
|
imbi2d |
|- ( y = v -> ( ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) <-> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) |
62 |
56 61
|
imbi12d |
|- ( y = v -> ( ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) <-> ( [_ v / x ]_ R = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) ) |
63 |
62
|
spvv |
|- ( A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) -> ( [_ v / x ]_ R = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) |
64 |
49 50 63
|
sylc |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) |
65 |
33 41 64
|
mp2and |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [ v / x ] ps ) |
66 |
65
|
ex |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ( [_ v / x ]_ R e. R -> [ v / x ] ps ) ) |
67 |
66
|
alrimiv |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> A. v ( [_ v / x ]_ R e. R -> [ v / x ] ps ) ) |
68 |
53
|
eleq1d |
|- ( v = y -> ( [_ v / x ]_ R e. R <-> S e. R ) ) |
69 |
68 58
|
imbi12d |
|- ( v = y -> ( ( [_ v / x ]_ R e. R -> [ v / x ] ps ) <-> ( S e. R -> ch ) ) ) |
70 |
69
|
cbvalvw |
|- ( A. v ( [_ v / x ]_ R e. R -> [ v / x ] ps ) <-> A. y ( S e. R -> ch ) ) |
71 |
67 70
|
sylib |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> A. y ( S e. R -> ch ) ) |
72 |
27 30 32 71 3
|
syl121anc |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ps ) |
73 |
72
|
3exp |
|- ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) -> ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) |
74 |
73
|
alrimiv |
|- ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) -> A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) |
75 |
74
|
ex |
|- ( z e. On -> ( A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) -> A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) ) |
76 |
20 26 75
|
tfis3 |
|- ( T e. On -> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) |
77 |
2 76
|
syl |
|- ( ph -> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) |
78 |
7
|
eqeq1d |
|- ( x = A -> ( R = T <-> T = T ) ) |
79 |
5
|
imbi2d |
|- ( x = A -> ( ( ( ph /\ T C_ T ) -> ps ) <-> ( ( ph /\ T C_ T ) -> th ) ) ) |
80 |
78 79
|
imbi12d |
|- ( x = A -> ( ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) <-> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) ) |
81 |
80
|
spcgv |
|- ( A e. V -> ( A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) -> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) ) |
82 |
1 77 81
|
sylc |
|- ( ph -> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) |
83 |
9 82
|
mpi |
|- ( ph -> ( ( ph /\ T C_ T ) -> th ) ) |
84 |
83
|
expd |
|- ( ph -> ( ph -> ( T C_ T -> th ) ) ) |
85 |
84
|
pm2.43i |
|- ( ph -> ( T C_ T -> th ) ) |
86 |
8 85
|
mpi |
|- ( ph -> th ) |