| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfisi.a |
|- ( ph -> A e. V ) |
| 2 |
|
tfisi.b |
|- ( ph -> T e. On ) |
| 3 |
|
tfisi.c |
|- ( ( ph /\ ( R e. On /\ R C_ T ) /\ A. y ( S e. R -> ch ) ) -> ps ) |
| 4 |
|
tfisi.d |
|- ( x = y -> ( ps <-> ch ) ) |
| 5 |
|
tfisi.e |
|- ( x = A -> ( ps <-> th ) ) |
| 6 |
|
tfisi.f |
|- ( x = y -> R = S ) |
| 7 |
|
tfisi.g |
|- ( x = A -> R = T ) |
| 8 |
|
ssid |
|- T C_ T |
| 9 |
|
eqid |
|- T = T |
| 10 |
|
eqeq2 |
|- ( z = w -> ( R = z <-> R = w ) ) |
| 11 |
|
sseq1 |
|- ( z = w -> ( z C_ T <-> w C_ T ) ) |
| 12 |
11
|
anbi2d |
|- ( z = w -> ( ( ph /\ z C_ T ) <-> ( ph /\ w C_ T ) ) ) |
| 13 |
12
|
imbi1d |
|- ( z = w -> ( ( ( ph /\ z C_ T ) -> ps ) <-> ( ( ph /\ w C_ T ) -> ps ) ) ) |
| 14 |
10 13
|
imbi12d |
|- ( z = w -> ( ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) ) ) |
| 15 |
14
|
albidv |
|- ( z = w -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. x ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) ) ) |
| 16 |
6
|
eqeq1d |
|- ( x = y -> ( R = w <-> S = w ) ) |
| 17 |
4
|
imbi2d |
|- ( x = y -> ( ( ( ph /\ w C_ T ) -> ps ) <-> ( ( ph /\ w C_ T ) -> ch ) ) ) |
| 18 |
16 17
|
imbi12d |
|- ( x = y -> ( ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) <-> ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) ) |
| 19 |
18
|
cbvalvw |
|- ( A. x ( R = w -> ( ( ph /\ w C_ T ) -> ps ) ) <-> A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) |
| 20 |
15 19
|
bitrdi |
|- ( z = w -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) ) |
| 21 |
|
eqeq2 |
|- ( z = T -> ( R = z <-> R = T ) ) |
| 22 |
|
sseq1 |
|- ( z = T -> ( z C_ T <-> T C_ T ) ) |
| 23 |
22
|
anbi2d |
|- ( z = T -> ( ( ph /\ z C_ T ) <-> ( ph /\ T C_ T ) ) ) |
| 24 |
23
|
imbi1d |
|- ( z = T -> ( ( ( ph /\ z C_ T ) -> ps ) <-> ( ( ph /\ T C_ T ) -> ps ) ) ) |
| 25 |
21 24
|
imbi12d |
|- ( z = T -> ( ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) ) |
| 26 |
25
|
albidv |
|- ( z = T -> ( A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) <-> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) ) |
| 27 |
|
simp3l |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ph ) |
| 28 |
|
simp2 |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R = z ) |
| 29 |
|
simp1l |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> z e. On ) |
| 30 |
28 29
|
eqeltrd |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R e. On ) |
| 31 |
|
simp3r |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> z C_ T ) |
| 32 |
28 31
|
eqsstrd |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> R C_ T ) |
| 33 |
|
simpl3l |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> ph ) |
| 34 |
|
simpl1l |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> z e. On ) |
| 35 |
|
simpr |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R e. R ) |
| 36 |
|
simpl2 |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> R = z ) |
| 37 |
35 36
|
eleqtrd |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R e. z ) |
| 38 |
|
onelss |
|- ( z e. On -> ( [_ v / x ]_ R e. z -> [_ v / x ]_ R C_ z ) ) |
| 39 |
34 37 38
|
sylc |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R C_ z ) |
| 40 |
|
simpl3r |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> z C_ T ) |
| 41 |
39 40
|
sstrd |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R C_ T ) |
| 42 |
|
eqeq2 |
|- ( w = [_ v / x ]_ R -> ( S = w <-> S = [_ v / x ]_ R ) ) |
| 43 |
|
sseq1 |
|- ( w = [_ v / x ]_ R -> ( w C_ T <-> [_ v / x ]_ R C_ T ) ) |
| 44 |
43
|
anbi2d |
|- ( w = [_ v / x ]_ R -> ( ( ph /\ w C_ T ) <-> ( ph /\ [_ v / x ]_ R C_ T ) ) ) |
| 45 |
44
|
imbi1d |
|- ( w = [_ v / x ]_ R -> ( ( ( ph /\ w C_ T ) -> ch ) <-> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) |
| 46 |
42 45
|
imbi12d |
|- ( w = [_ v / x ]_ R -> ( ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) <-> ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) ) |
| 47 |
46
|
albidv |
|- ( w = [_ v / x ]_ R -> ( A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) <-> A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) ) |
| 48 |
|
simpl1r |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) |
| 49 |
47 48 37
|
rspcdva |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) ) |
| 50 |
|
eqidd |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [_ v / x ]_ R = [_ v / x ]_ R ) |
| 51 |
|
nfcv |
|- F/_ x y |
| 52 |
|
nfcv |
|- F/_ x S |
| 53 |
51 52 6
|
csbhypf |
|- ( v = y -> [_ v / x ]_ R = S ) |
| 54 |
53
|
eqcomd |
|- ( v = y -> S = [_ v / x ]_ R ) |
| 55 |
54
|
equcoms |
|- ( y = v -> S = [_ v / x ]_ R ) |
| 56 |
55
|
eqeq1d |
|- ( y = v -> ( S = [_ v / x ]_ R <-> [_ v / x ]_ R = [_ v / x ]_ R ) ) |
| 57 |
|
nfv |
|- F/ x ch |
| 58 |
57 4
|
sbhypf |
|- ( v = y -> ( [ v / x ] ps <-> ch ) ) |
| 59 |
58
|
bicomd |
|- ( v = y -> ( ch <-> [ v / x ] ps ) ) |
| 60 |
59
|
equcoms |
|- ( y = v -> ( ch <-> [ v / x ] ps ) ) |
| 61 |
60
|
imbi2d |
|- ( y = v -> ( ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) <-> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) |
| 62 |
56 61
|
imbi12d |
|- ( y = v -> ( ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) <-> ( [_ v / x ]_ R = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) ) |
| 63 |
62
|
spvv |
|- ( A. y ( S = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> ch ) ) -> ( [_ v / x ]_ R = [_ v / x ]_ R -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) ) |
| 64 |
49 50 63
|
sylc |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> ( ( ph /\ [_ v / x ]_ R C_ T ) -> [ v / x ] ps ) ) |
| 65 |
33 41 64
|
mp2and |
|- ( ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) /\ [_ v / x ]_ R e. R ) -> [ v / x ] ps ) |
| 66 |
65
|
ex |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ( [_ v / x ]_ R e. R -> [ v / x ] ps ) ) |
| 67 |
66
|
alrimiv |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> A. v ( [_ v / x ]_ R e. R -> [ v / x ] ps ) ) |
| 68 |
53
|
eleq1d |
|- ( v = y -> ( [_ v / x ]_ R e. R <-> S e. R ) ) |
| 69 |
68 58
|
imbi12d |
|- ( v = y -> ( ( [_ v / x ]_ R e. R -> [ v / x ] ps ) <-> ( S e. R -> ch ) ) ) |
| 70 |
69
|
cbvalvw |
|- ( A. v ( [_ v / x ]_ R e. R -> [ v / x ] ps ) <-> A. y ( S e. R -> ch ) ) |
| 71 |
67 70
|
sylib |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> A. y ( S e. R -> ch ) ) |
| 72 |
27 30 32 71 3
|
syl121anc |
|- ( ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) /\ R = z /\ ( ph /\ z C_ T ) ) -> ps ) |
| 73 |
72
|
3exp |
|- ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) -> ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) |
| 74 |
73
|
alrimiv |
|- ( ( z e. On /\ A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) ) -> A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) |
| 75 |
74
|
ex |
|- ( z e. On -> ( A. w e. z A. y ( S = w -> ( ( ph /\ w C_ T ) -> ch ) ) -> A. x ( R = z -> ( ( ph /\ z C_ T ) -> ps ) ) ) ) |
| 76 |
20 26 75
|
tfis3 |
|- ( T e. On -> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) |
| 77 |
2 76
|
syl |
|- ( ph -> A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) ) |
| 78 |
7
|
eqeq1d |
|- ( x = A -> ( R = T <-> T = T ) ) |
| 79 |
5
|
imbi2d |
|- ( x = A -> ( ( ( ph /\ T C_ T ) -> ps ) <-> ( ( ph /\ T C_ T ) -> th ) ) ) |
| 80 |
78 79
|
imbi12d |
|- ( x = A -> ( ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) <-> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) ) |
| 81 |
80
|
spcgv |
|- ( A e. V -> ( A. x ( R = T -> ( ( ph /\ T C_ T ) -> ps ) ) -> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) ) |
| 82 |
1 77 81
|
sylc |
|- ( ph -> ( T = T -> ( ( ph /\ T C_ T ) -> th ) ) ) |
| 83 |
9 82
|
mpi |
|- ( ph -> ( ( ph /\ T C_ T ) -> th ) ) |
| 84 |
83
|
expd |
|- ( ph -> ( ph -> ( T C_ T -> th ) ) ) |
| 85 |
84
|
pm2.43i |
|- ( ph -> ( T C_ T -> th ) ) |
| 86 |
8 85
|
mpi |
|- ( ph -> th ) |