| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfr.1 |  |-  F = recs ( G ) | 
						
							| 2 |  | eqid |  |-  { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } | 
						
							| 3 | 2 | tfrlem9 |  |-  ( A e. dom recs ( G ) -> ( recs ( G ) ` A ) = ( G ` ( recs ( G ) |` A ) ) ) | 
						
							| 4 | 1 | dmeqi |  |-  dom F = dom recs ( G ) | 
						
							| 5 | 3 4 | eleq2s |  |-  ( A e. dom F -> ( recs ( G ) ` A ) = ( G ` ( recs ( G ) |` A ) ) ) | 
						
							| 6 | 1 | fveq1i |  |-  ( F ` A ) = ( recs ( G ) ` A ) | 
						
							| 7 | 1 | reseq1i |  |-  ( F |` A ) = ( recs ( G ) |` A ) | 
						
							| 8 | 7 | fveq2i |  |-  ( G ` ( F |` A ) ) = ( G ` ( recs ( G ) |` A ) ) | 
						
							| 9 | 5 6 8 | 3eqtr4g |  |-  ( A e. dom F -> ( F ` A ) = ( G ` ( F |` A ) ) ) |