| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfr.1 |  |-  F = recs ( G ) | 
						
							| 2 |  | ordeleqon |  |-  ( Ord A <-> ( A e. On \/ A = On ) ) | 
						
							| 3 |  | eqid |  |-  { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } | 
						
							| 4 | 3 | tfrlem15 |  |-  ( A e. On -> ( A e. dom recs ( G ) <-> ( recs ( G ) |` A ) e. _V ) ) | 
						
							| 5 | 1 | dmeqi |  |-  dom F = dom recs ( G ) | 
						
							| 6 | 5 | eleq2i |  |-  ( A e. dom F <-> A e. dom recs ( G ) ) | 
						
							| 7 | 1 | reseq1i |  |-  ( F |` A ) = ( recs ( G ) |` A ) | 
						
							| 8 | 7 | eleq1i |  |-  ( ( F |` A ) e. _V <-> ( recs ( G ) |` A ) e. _V ) | 
						
							| 9 | 4 6 8 | 3bitr4g |  |-  ( A e. On -> ( A e. dom F <-> ( F |` A ) e. _V ) ) | 
						
							| 10 |  | onprc |  |-  -. On e. _V | 
						
							| 11 |  | elex |  |-  ( On e. dom F -> On e. _V ) | 
						
							| 12 | 10 11 | mto |  |-  -. On e. dom F | 
						
							| 13 |  | eleq1 |  |-  ( A = On -> ( A e. dom F <-> On e. dom F ) ) | 
						
							| 14 | 12 13 | mtbiri |  |-  ( A = On -> -. A e. dom F ) | 
						
							| 15 | 3 | tfrlem13 |  |-  -. recs ( G ) e. _V | 
						
							| 16 | 1 15 | eqneltri |  |-  -. F e. _V | 
						
							| 17 |  | reseq2 |  |-  ( A = On -> ( F |` A ) = ( F |` On ) ) | 
						
							| 18 | 1 | tfr1a |  |-  ( Fun F /\ Lim dom F ) | 
						
							| 19 | 18 | simpli |  |-  Fun F | 
						
							| 20 |  | funrel |  |-  ( Fun F -> Rel F ) | 
						
							| 21 | 19 20 | ax-mp |  |-  Rel F | 
						
							| 22 | 18 | simpri |  |-  Lim dom F | 
						
							| 23 |  | limord |  |-  ( Lim dom F -> Ord dom F ) | 
						
							| 24 |  | ordsson |  |-  ( Ord dom F -> dom F C_ On ) | 
						
							| 25 | 22 23 24 | mp2b |  |-  dom F C_ On | 
						
							| 26 |  | relssres |  |-  ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) | 
						
							| 27 | 21 25 26 | mp2an |  |-  ( F |` On ) = F | 
						
							| 28 | 17 27 | eqtrdi |  |-  ( A = On -> ( F |` A ) = F ) | 
						
							| 29 | 28 | eleq1d |  |-  ( A = On -> ( ( F |` A ) e. _V <-> F e. _V ) ) | 
						
							| 30 | 16 29 | mtbiri |  |-  ( A = On -> -. ( F |` A ) e. _V ) | 
						
							| 31 | 14 30 | 2falsed |  |-  ( A = On -> ( A e. dom F <-> ( F |` A ) e. _V ) ) | 
						
							| 32 | 9 31 | jaoi |  |-  ( ( A e. On \/ A = On ) -> ( A e. dom F <-> ( F |` A ) e. _V ) ) | 
						
							| 33 | 2 32 | sylbi |  |-  ( Ord A -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |