| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfr.1 |
|- F = recs ( G ) |
| 2 |
|
ordeleqon |
|- ( Ord A <-> ( A e. On \/ A = On ) ) |
| 3 |
|
eqid |
|- { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( G ` ( f |` y ) ) ) } |
| 4 |
3
|
tfrlem15 |
|- ( A e. On -> ( A e. dom recs ( G ) <-> ( recs ( G ) |` A ) e. _V ) ) |
| 5 |
1
|
dmeqi |
|- dom F = dom recs ( G ) |
| 6 |
5
|
eleq2i |
|- ( A e. dom F <-> A e. dom recs ( G ) ) |
| 7 |
1
|
reseq1i |
|- ( F |` A ) = ( recs ( G ) |` A ) |
| 8 |
7
|
eleq1i |
|- ( ( F |` A ) e. _V <-> ( recs ( G ) |` A ) e. _V ) |
| 9 |
4 6 8
|
3bitr4g |
|- ( A e. On -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |
| 10 |
|
onprc |
|- -. On e. _V |
| 11 |
|
elex |
|- ( On e. dom F -> On e. _V ) |
| 12 |
10 11
|
mto |
|- -. On e. dom F |
| 13 |
|
eleq1 |
|- ( A = On -> ( A e. dom F <-> On e. dom F ) ) |
| 14 |
12 13
|
mtbiri |
|- ( A = On -> -. A e. dom F ) |
| 15 |
3
|
tfrlem13 |
|- -. recs ( G ) e. _V |
| 16 |
1 15
|
eqneltri |
|- -. F e. _V |
| 17 |
|
reseq2 |
|- ( A = On -> ( F |` A ) = ( F |` On ) ) |
| 18 |
1
|
tfr1a |
|- ( Fun F /\ Lim dom F ) |
| 19 |
18
|
simpli |
|- Fun F |
| 20 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 21 |
19 20
|
ax-mp |
|- Rel F |
| 22 |
18
|
simpri |
|- Lim dom F |
| 23 |
|
limord |
|- ( Lim dom F -> Ord dom F ) |
| 24 |
|
ordsson |
|- ( Ord dom F -> dom F C_ On ) |
| 25 |
22 23 24
|
mp2b |
|- dom F C_ On |
| 26 |
|
relssres |
|- ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) |
| 27 |
21 25 26
|
mp2an |
|- ( F |` On ) = F |
| 28 |
17 27
|
eqtrdi |
|- ( A = On -> ( F |` A ) = F ) |
| 29 |
28
|
eleq1d |
|- ( A = On -> ( ( F |` A ) e. _V <-> F e. _V ) ) |
| 30 |
16 29
|
mtbiri |
|- ( A = On -> -. ( F |` A ) e. _V ) |
| 31 |
14 30
|
2falsed |
|- ( A = On -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |
| 32 |
9 31
|
jaoi |
|- ( ( A e. On \/ A = On ) -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |
| 33 |
2 32
|
sylbi |
|- ( Ord A -> ( A e. dom F <-> ( F |` A ) e. _V ) ) |