| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfr.1 |  |-  F = recs ( G ) | 
						
							| 2 |  | nfv |  |-  F/ x B Fn On | 
						
							| 3 |  | nfra1 |  |-  F/ x A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) | 
						
							| 4 | 2 3 | nfan |  |-  F/ x ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) | 
						
							| 5 |  | nfv |  |-  F/ x ( B ` y ) = ( F ` y ) | 
						
							| 6 | 4 5 | nfim |  |-  F/ x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) | 
						
							| 7 |  | fveq2 |  |-  ( x = y -> ( B ` x ) = ( B ` y ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( x = y -> ( ( B ` x ) = ( F ` x ) <-> ( B ` y ) = ( F ` y ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( x = y -> ( ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) <-> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) ) ) | 
						
							| 11 |  | r19.21v |  |-  ( A. y e. x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) <-> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. y e. x ( B ` y ) = ( F ` y ) ) ) | 
						
							| 12 |  | rsp |  |-  ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) ) | 
						
							| 13 |  | onss |  |-  ( x e. On -> x C_ On ) | 
						
							| 14 | 1 | tfr1 |  |-  F Fn On | 
						
							| 15 |  | fvreseq |  |-  ( ( ( B Fn On /\ F Fn On ) /\ x C_ On ) -> ( ( B |` x ) = ( F |` x ) <-> A. y e. x ( B ` y ) = ( F ` y ) ) ) | 
						
							| 16 | 14 15 | mpanl2 |  |-  ( ( B Fn On /\ x C_ On ) -> ( ( B |` x ) = ( F |` x ) <-> A. y e. x ( B ` y ) = ( F ` y ) ) ) | 
						
							| 17 |  | fveq2 |  |-  ( ( B |` x ) = ( F |` x ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) | 
						
							| 18 | 16 17 | biimtrrdi |  |-  ( ( B Fn On /\ x C_ On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) | 
						
							| 19 | 13 18 | sylan2 |  |-  ( ( B Fn On /\ x e. On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) | 
						
							| 20 | 19 | ancoms |  |-  ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) | 
						
							| 23 | 1 | tfr2 |  |-  ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) | 
						
							| 24 | 23 | jctr |  |-  ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) | 
						
							| 25 |  | jcab |  |-  ( ( x e. On -> ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) ) <-> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) | 
						
							| 26 | 24 25 | sylibr |  |-  ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) | 
						
							| 27 |  | eqeq12 |  |-  ( ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) | 
						
							| 28 | 26 27 | syl6 |  |-  ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) | 
						
							| 31 | 22 30 | mpbird |  |-  ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( B ` x ) = ( F ` x ) ) | 
						
							| 32 | 31 | exp43 |  |-  ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B ` x ) = ( F ` x ) ) ) ) ) | 
						
							| 33 | 32 | com4t |  |-  ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) | 
						
							| 34 | 33 | exp4a |  |-  ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) ) | 
						
							| 35 | 34 | pm2.43d |  |-  ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) | 
						
							| 36 | 12 35 | syl |  |-  ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) | 
						
							| 37 | 36 | com3l |  |-  ( x e. On -> ( B Fn On -> ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) | 
						
							| 38 | 37 | impd |  |-  ( x e. On -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) | 
						
							| 39 | 38 | a2d |  |-  ( x e. On -> ( ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. y e. x ( B ` y ) = ( F ` y ) ) -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) ) | 
						
							| 40 | 11 39 | biimtrid |  |-  ( x e. On -> ( A. y e. x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) ) | 
						
							| 41 | 6 10 40 | tfis2f |  |-  ( x e. On -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) | 
						
							| 42 | 41 | com12 |  |-  ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B ` x ) = ( F ` x ) ) ) | 
						
							| 43 | 4 42 | ralrimi |  |-  ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. x e. On ( B ` x ) = ( F ` x ) ) | 
						
							| 44 |  | eqfnfv |  |-  ( ( B Fn On /\ F Fn On ) -> ( B = F <-> A. x e. On ( B ` x ) = ( F ` x ) ) ) | 
						
							| 45 | 14 44 | mpan2 |  |-  ( B Fn On -> ( B = F <-> A. x e. On ( B ` x ) = ( F ` x ) ) ) | 
						
							| 46 | 45 | biimpar |  |-  ( ( B Fn On /\ A. x e. On ( B ` x ) = ( F ` x ) ) -> B = F ) | 
						
							| 47 | 43 46 | syldan |  |-  ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> B = F ) |