Step |
Hyp |
Ref |
Expression |
1 |
|
tfr.1 |
|- F = recs ( G ) |
2 |
|
nfv |
|- F/ x B Fn On |
3 |
|
nfra1 |
|- F/ x A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) |
4 |
2 3
|
nfan |
|- F/ x ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) |
5 |
|
nfv |
|- F/ x ( B ` y ) = ( F ` y ) |
6 |
4 5
|
nfim |
|- F/ x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) |
7 |
|
fveq2 |
|- ( x = y -> ( B ` x ) = ( B ` y ) ) |
8 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
9 |
7 8
|
eqeq12d |
|- ( x = y -> ( ( B ` x ) = ( F ` x ) <-> ( B ` y ) = ( F ` y ) ) ) |
10 |
9
|
imbi2d |
|- ( x = y -> ( ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) <-> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) ) ) |
11 |
|
r19.21v |
|- ( A. y e. x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) <-> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. y e. x ( B ` y ) = ( F ` y ) ) ) |
12 |
|
rsp |
|- ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) ) |
13 |
|
onss |
|- ( x e. On -> x C_ On ) |
14 |
1
|
tfr1 |
|- F Fn On |
15 |
|
fvreseq |
|- ( ( ( B Fn On /\ F Fn On ) /\ x C_ On ) -> ( ( B |` x ) = ( F |` x ) <-> A. y e. x ( B ` y ) = ( F ` y ) ) ) |
16 |
14 15
|
mpanl2 |
|- ( ( B Fn On /\ x C_ On ) -> ( ( B |` x ) = ( F |` x ) <-> A. y e. x ( B ` y ) = ( F ` y ) ) ) |
17 |
|
fveq2 |
|- ( ( B |` x ) = ( F |` x ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) |
18 |
16 17
|
syl6bir |
|- ( ( B Fn On /\ x C_ On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
19 |
13 18
|
sylan2 |
|- ( ( B Fn On /\ x e. On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
20 |
19
|
ancoms |
|- ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
21 |
20
|
imp |
|- ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) |
22 |
21
|
adantr |
|- ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) |
23 |
1
|
tfr2 |
|- ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) |
24 |
23
|
jctr |
|- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) |
25 |
|
jcab |
|- ( ( x e. On -> ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) ) <-> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) |
26 |
24 25
|
sylibr |
|- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) |
27 |
|
eqeq12 |
|- ( ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
28 |
26 27
|
syl6 |
|- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) ) |
29 |
28
|
imp |
|- ( ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
30 |
29
|
adantl |
|- ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
31 |
22 30
|
mpbird |
|- ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( B ` x ) = ( F ` x ) ) |
32 |
31
|
exp43 |
|- ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B ` x ) = ( F ` x ) ) ) ) ) |
33 |
32
|
com4t |
|- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
34 |
33
|
exp4a |
|- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) ) |
35 |
34
|
pm2.43d |
|- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
36 |
12 35
|
syl |
|- ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
37 |
36
|
com3l |
|- ( x e. On -> ( B Fn On -> ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
38 |
37
|
impd |
|- ( x e. On -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) |
39 |
38
|
a2d |
|- ( x e. On -> ( ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. y e. x ( B ` y ) = ( F ` y ) ) -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) ) |
40 |
11 39
|
syl5bi |
|- ( x e. On -> ( A. y e. x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) ) |
41 |
6 10 40
|
tfis2f |
|- ( x e. On -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) |
42 |
41
|
com12 |
|- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B ` x ) = ( F ` x ) ) ) |
43 |
4 42
|
ralrimi |
|- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. x e. On ( B ` x ) = ( F ` x ) ) |
44 |
|
eqfnfv |
|- ( ( B Fn On /\ F Fn On ) -> ( B = F <-> A. x e. On ( B ` x ) = ( F ` x ) ) ) |
45 |
14 44
|
mpan2 |
|- ( B Fn On -> ( B = F <-> A. x e. On ( B ` x ) = ( F ` x ) ) ) |
46 |
45
|
biimpar |
|- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( F ` x ) ) -> B = F ) |
47 |
43 46
|
syldan |
|- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> B = F ) |