| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrALT.1 |  |-  F = recs ( G ) | 
						
							| 2 |  | predon |  |-  ( x e. On -> Pred ( _E , On , x ) = x ) | 
						
							| 3 | 2 | reseq2d |  |-  ( x e. On -> ( B |` Pred ( _E , On , x ) ) = ( B |` x ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( x e. On -> ( G ` ( B |` Pred ( _E , On , x ) ) ) = ( G ` ( B |` x ) ) ) | 
						
							| 5 | 4 | eqeq2d |  |-  ( x e. On -> ( ( B ` x ) = ( G ` ( B |` Pred ( _E , On , x ) ) ) <-> ( B ` x ) = ( G ` ( B |` x ) ) ) ) | 
						
							| 6 | 5 | ralbiia |  |-  ( A. x e. On ( B ` x ) = ( G ` ( B |` Pred ( _E , On , x ) ) ) <-> A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) | 
						
							| 7 |  | epweon |  |-  _E We On | 
						
							| 8 |  | epse |  |-  _E Se On | 
						
							| 9 |  | df-recs |  |-  recs ( G ) = wrecs ( _E , On , G ) | 
						
							| 10 | 1 9 | eqtri |  |-  F = wrecs ( _E , On , G ) | 
						
							| 11 | 10 | wfr3 |  |-  ( ( ( _E We On /\ _E Se On ) /\ ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` Pred ( _E , On , x ) ) ) ) ) -> F = B ) | 
						
							| 12 | 7 8 11 | mpanl12 |  |-  ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` Pred ( _E , On , x ) ) ) ) -> F = B ) | 
						
							| 13 | 6 12 | sylan2br |  |-  ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> F = B ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> B = F ) |