Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
|
tfrlem.3 |
|- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
3 |
|
fvex |
|- ( F ` recs ( F ) ) e. _V |
4 |
|
funsng |
|- ( ( dom recs ( F ) e. On /\ ( F ` recs ( F ) ) e. _V ) -> Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
5 |
3 4
|
mpan2 |
|- ( dom recs ( F ) e. On -> Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
6 |
1
|
tfrlem7 |
|- Fun recs ( F ) |
7 |
5 6
|
jctil |
|- ( dom recs ( F ) e. On -> ( Fun recs ( F ) /\ Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
8 |
3
|
dmsnop |
|- dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } = { dom recs ( F ) } |
9 |
8
|
ineq2i |
|- ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) i^i { dom recs ( F ) } ) |
10 |
1
|
tfrlem8 |
|- Ord dom recs ( F ) |
11 |
|
orddisj |
|- ( Ord dom recs ( F ) -> ( dom recs ( F ) i^i { dom recs ( F ) } ) = (/) ) |
12 |
10 11
|
ax-mp |
|- ( dom recs ( F ) i^i { dom recs ( F ) } ) = (/) |
13 |
9 12
|
eqtri |
|- ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = (/) |
14 |
|
funun |
|- ( ( ( Fun recs ( F ) /\ Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) /\ ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = (/) ) -> Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
15 |
7 13 14
|
sylancl |
|- ( dom recs ( F ) e. On -> Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
16 |
8
|
uneq2i |
|- ( dom recs ( F ) u. dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) u. { dom recs ( F ) } ) |
17 |
|
dmun |
|- dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) u. dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
18 |
|
df-suc |
|- suc dom recs ( F ) = ( dom recs ( F ) u. { dom recs ( F ) } ) |
19 |
16 17 18
|
3eqtr4i |
|- dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) |
20 |
|
df-fn |
|- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) <-> ( Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) /\ dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) ) |
21 |
15 19 20
|
sylanblrc |
|- ( dom recs ( F ) e. On -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) |
22 |
2
|
fneq1i |
|- ( C Fn suc dom recs ( F ) <-> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) |
23 |
21 22
|
sylibr |
|- ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) |