Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
|
tfrlem.3 |
|- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
3 |
1
|
tfrlem8 |
|- Ord dom recs ( F ) |
4 |
3
|
a1i |
|- ( recs ( F ) e. _V -> Ord dom recs ( F ) ) |
5 |
|
dmexg |
|- ( recs ( F ) e. _V -> dom recs ( F ) e. _V ) |
6 |
|
elon2 |
|- ( dom recs ( F ) e. On <-> ( Ord dom recs ( F ) /\ dom recs ( F ) e. _V ) ) |
7 |
4 5 6
|
sylanbrc |
|- ( recs ( F ) e. _V -> dom recs ( F ) e. On ) |
8 |
|
suceloni |
|- ( dom recs ( F ) e. On -> suc dom recs ( F ) e. On ) |
9 |
1 2
|
tfrlem10 |
|- ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) |
10 |
1 2
|
tfrlem11 |
|- ( dom recs ( F ) e. On -> ( z e. suc dom recs ( F ) -> ( C ` z ) = ( F ` ( C |` z ) ) ) ) |
11 |
10
|
ralrimiv |
|- ( dom recs ( F ) e. On -> A. z e. suc dom recs ( F ) ( C ` z ) = ( F ` ( C |` z ) ) ) |
12 |
|
fveq2 |
|- ( z = y -> ( C ` z ) = ( C ` y ) ) |
13 |
|
reseq2 |
|- ( z = y -> ( C |` z ) = ( C |` y ) ) |
14 |
13
|
fveq2d |
|- ( z = y -> ( F ` ( C |` z ) ) = ( F ` ( C |` y ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( z = y -> ( ( C ` z ) = ( F ` ( C |` z ) ) <-> ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
16 |
15
|
cbvralvw |
|- ( A. z e. suc dom recs ( F ) ( C ` z ) = ( F ` ( C |` z ) ) <-> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) |
17 |
11 16
|
sylib |
|- ( dom recs ( F ) e. On -> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) |
18 |
|
fneq2 |
|- ( x = suc dom recs ( F ) -> ( C Fn x <-> C Fn suc dom recs ( F ) ) ) |
19 |
|
raleq |
|- ( x = suc dom recs ( F ) -> ( A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) <-> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
20 |
18 19
|
anbi12d |
|- ( x = suc dom recs ( F ) -> ( ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) <-> ( C Fn suc dom recs ( F ) /\ A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
21 |
20
|
rspcev |
|- ( ( suc dom recs ( F ) e. On /\ ( C Fn suc dom recs ( F ) /\ A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
22 |
8 9 17 21
|
syl12anc |
|- ( dom recs ( F ) e. On -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
23 |
7 22
|
syl |
|- ( recs ( F ) e. _V -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
24 |
|
snex |
|- { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } e. _V |
25 |
|
unexg |
|- ( ( recs ( F ) e. _V /\ { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } e. _V ) -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. _V ) |
26 |
24 25
|
mpan2 |
|- ( recs ( F ) e. _V -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. _V ) |
27 |
2 26
|
eqeltrid |
|- ( recs ( F ) e. _V -> C e. _V ) |
28 |
|
fneq1 |
|- ( f = C -> ( f Fn x <-> C Fn x ) ) |
29 |
|
fveq1 |
|- ( f = C -> ( f ` y ) = ( C ` y ) ) |
30 |
|
reseq1 |
|- ( f = C -> ( f |` y ) = ( C |` y ) ) |
31 |
30
|
fveq2d |
|- ( f = C -> ( F ` ( f |` y ) ) = ( F ` ( C |` y ) ) ) |
32 |
29 31
|
eqeq12d |
|- ( f = C -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
33 |
32
|
ralbidv |
|- ( f = C -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) <-> A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
34 |
28 33
|
anbi12d |
|- ( f = C -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
35 |
34
|
rexbidv |
|- ( f = C -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
36 |
35 1
|
elab2g |
|- ( C e. _V -> ( C e. A <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
37 |
27 36
|
syl |
|- ( recs ( F ) e. _V -> ( C e. A <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
38 |
23 37
|
mpbird |
|- ( recs ( F ) e. _V -> C e. A ) |