Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
1
|
tfrlem8 |
|- Ord dom recs ( F ) |
3 |
|
ordirr |
|- ( Ord dom recs ( F ) -> -. dom recs ( F ) e. dom recs ( F ) ) |
4 |
2 3
|
ax-mp |
|- -. dom recs ( F ) e. dom recs ( F ) |
5 |
|
eqid |
|- ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
6 |
1 5
|
tfrlem12 |
|- ( recs ( F ) e. _V -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A ) |
7 |
|
elssuni |
|- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ U. A ) |
8 |
1
|
recsfval |
|- recs ( F ) = U. A |
9 |
7 8
|
sseqtrrdi |
|- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. A -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ recs ( F ) ) |
10 |
|
dmss |
|- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ recs ( F ) -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ dom recs ( F ) ) |
11 |
6 9 10
|
3syl |
|- ( recs ( F ) e. _V -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) C_ dom recs ( F ) ) |
12 |
2
|
a1i |
|- ( recs ( F ) e. _V -> Ord dom recs ( F ) ) |
13 |
|
dmexg |
|- ( recs ( F ) e. _V -> dom recs ( F ) e. _V ) |
14 |
|
elon2 |
|- ( dom recs ( F ) e. On <-> ( Ord dom recs ( F ) /\ dom recs ( F ) e. _V ) ) |
15 |
12 13 14
|
sylanbrc |
|- ( recs ( F ) e. _V -> dom recs ( F ) e. On ) |
16 |
|
sucidg |
|- ( dom recs ( F ) e. On -> dom recs ( F ) e. suc dom recs ( F ) ) |
17 |
15 16
|
syl |
|- ( recs ( F ) e. _V -> dom recs ( F ) e. suc dom recs ( F ) ) |
18 |
1 5
|
tfrlem10 |
|- ( dom recs ( F ) e. On -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) |
19 |
|
fndm |
|- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) |
20 |
15 18 19
|
3syl |
|- ( recs ( F ) e. _V -> dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) |
21 |
17 20
|
eleqtrrd |
|- ( recs ( F ) e. _V -> dom recs ( F ) e. dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
22 |
11 21
|
sseldd |
|- ( recs ( F ) e. _V -> dom recs ( F ) e. dom recs ( F ) ) |
23 |
4 22
|
mto |
|- -. recs ( F ) e. _V |