Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
1
|
tfrlem9a |
|- ( B e. dom recs ( F ) -> ( recs ( F ) |` B ) e. _V ) |
3 |
2
|
adantl |
|- ( ( B e. On /\ B e. dom recs ( F ) ) -> ( recs ( F ) |` B ) e. _V ) |
4 |
1
|
tfrlem13 |
|- -. recs ( F ) e. _V |
5 |
|
simpr |
|- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( recs ( F ) |` B ) e. _V ) |
6 |
|
resss |
|- ( recs ( F ) |` B ) C_ recs ( F ) |
7 |
6
|
a1i |
|- ( dom recs ( F ) C_ B -> ( recs ( F ) |` B ) C_ recs ( F ) ) |
8 |
1
|
tfrlem6 |
|- Rel recs ( F ) |
9 |
|
resdm |
|- ( Rel recs ( F ) -> ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) ) |
10 |
8 9
|
ax-mp |
|- ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) |
11 |
|
ssres2 |
|- ( dom recs ( F ) C_ B -> ( recs ( F ) |` dom recs ( F ) ) C_ ( recs ( F ) |` B ) ) |
12 |
10 11
|
eqsstrrid |
|- ( dom recs ( F ) C_ B -> recs ( F ) C_ ( recs ( F ) |` B ) ) |
13 |
7 12
|
eqssd |
|- ( dom recs ( F ) C_ B -> ( recs ( F ) |` B ) = recs ( F ) ) |
14 |
13
|
eleq1d |
|- ( dom recs ( F ) C_ B -> ( ( recs ( F ) |` B ) e. _V <-> recs ( F ) e. _V ) ) |
15 |
5 14
|
syl5ibcom |
|- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( dom recs ( F ) C_ B -> recs ( F ) e. _V ) ) |
16 |
4 15
|
mtoi |
|- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> -. dom recs ( F ) C_ B ) |
17 |
1
|
tfrlem8 |
|- Ord dom recs ( F ) |
18 |
|
eloni |
|- ( B e. On -> Ord B ) |
19 |
18
|
adantr |
|- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> Ord B ) |
20 |
|
ordtri1 |
|- ( ( Ord dom recs ( F ) /\ Ord B ) -> ( dom recs ( F ) C_ B <-> -. B e. dom recs ( F ) ) ) |
21 |
20
|
con2bid |
|- ( ( Ord dom recs ( F ) /\ Ord B ) -> ( B e. dom recs ( F ) <-> -. dom recs ( F ) C_ B ) ) |
22 |
17 19 21
|
sylancr |
|- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> ( B e. dom recs ( F ) <-> -. dom recs ( F ) C_ B ) ) |
23 |
16 22
|
mpbird |
|- ( ( B e. On /\ ( recs ( F ) |` B ) e. _V ) -> B e. dom recs ( F ) ) |
24 |
3 23
|
impbida |
|- ( B e. On -> ( B e. dom recs ( F ) <-> ( recs ( F ) |` B ) e. _V ) ) |