| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 | 1 | tfrlem8 |  |-  Ord dom recs ( F ) | 
						
							| 3 |  | ordzsl |  |-  ( Ord dom recs ( F ) <-> ( dom recs ( F ) = (/) \/ E. z e. On dom recs ( F ) = suc z \/ Lim dom recs ( F ) ) ) | 
						
							| 4 | 2 3 | mpbi |  |-  ( dom recs ( F ) = (/) \/ E. z e. On dom recs ( F ) = suc z \/ Lim dom recs ( F ) ) | 
						
							| 5 |  | res0 |  |-  ( recs ( F ) |` (/) ) = (/) | 
						
							| 6 |  | 0ex |  |-  (/) e. _V | 
						
							| 7 | 5 6 | eqeltri |  |-  ( recs ( F ) |` (/) ) e. _V | 
						
							| 8 |  | 0elon |  |-  (/) e. On | 
						
							| 9 | 1 | tfrlem15 |  |-  ( (/) e. On -> ( (/) e. dom recs ( F ) <-> ( recs ( F ) |` (/) ) e. _V ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( (/) e. dom recs ( F ) <-> ( recs ( F ) |` (/) ) e. _V ) | 
						
							| 11 | 7 10 | mpbir |  |-  (/) e. dom recs ( F ) | 
						
							| 12 | 11 | n0ii |  |-  -. dom recs ( F ) = (/) | 
						
							| 13 | 12 | pm2.21i |  |-  ( dom recs ( F ) = (/) -> Lim dom recs ( F ) ) | 
						
							| 14 | 1 | tfrlem13 |  |-  -. recs ( F ) e. _V | 
						
							| 15 |  | simpr |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> dom recs ( F ) = suc z ) | 
						
							| 16 |  | df-suc |  |-  suc z = ( z u. { z } ) | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> dom recs ( F ) = ( z u. { z } ) ) | 
						
							| 18 | 17 | reseq2d |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> ( recs ( F ) |` dom recs ( F ) ) = ( recs ( F ) |` ( z u. { z } ) ) ) | 
						
							| 19 | 1 | tfrlem6 |  |-  Rel recs ( F ) | 
						
							| 20 |  | resdm |  |-  ( Rel recs ( F ) -> ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) ) | 
						
							| 21 | 19 20 | ax-mp |  |-  ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) | 
						
							| 22 |  | resundi |  |-  ( recs ( F ) |` ( z u. { z } ) ) = ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) | 
						
							| 23 | 18 21 22 | 3eqtr3g |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> recs ( F ) = ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) ) | 
						
							| 24 |  | vex |  |-  z e. _V | 
						
							| 25 | 24 | sucid |  |-  z e. suc z | 
						
							| 26 | 25 15 | eleqtrrid |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> z e. dom recs ( F ) ) | 
						
							| 27 | 1 | tfrlem9a |  |-  ( z e. dom recs ( F ) -> ( recs ( F ) |` z ) e. _V ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> ( recs ( F ) |` z ) e. _V ) | 
						
							| 29 |  | snex |  |-  { <. z , ( recs ( F ) ` z ) >. } e. _V | 
						
							| 30 | 1 | tfrlem7 |  |-  Fun recs ( F ) | 
						
							| 31 |  | funressn |  |-  ( Fun recs ( F ) -> ( recs ( F ) |` { z } ) C_ { <. z , ( recs ( F ) ` z ) >. } ) | 
						
							| 32 | 30 31 | ax-mp |  |-  ( recs ( F ) |` { z } ) C_ { <. z , ( recs ( F ) ` z ) >. } | 
						
							| 33 | 29 32 | ssexi |  |-  ( recs ( F ) |` { z } ) e. _V | 
						
							| 34 |  | unexg |  |-  ( ( ( recs ( F ) |` z ) e. _V /\ ( recs ( F ) |` { z } ) e. _V ) -> ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) e. _V ) | 
						
							| 35 | 28 33 34 | sylancl |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> ( ( recs ( F ) |` z ) u. ( recs ( F ) |` { z } ) ) e. _V ) | 
						
							| 36 | 23 35 | eqeltrd |  |-  ( ( z e. On /\ dom recs ( F ) = suc z ) -> recs ( F ) e. _V ) | 
						
							| 37 | 36 | rexlimiva |  |-  ( E. z e. On dom recs ( F ) = suc z -> recs ( F ) e. _V ) | 
						
							| 38 | 14 37 | mto |  |-  -. E. z e. On dom recs ( F ) = suc z | 
						
							| 39 | 38 | pm2.21i |  |-  ( E. z e. On dom recs ( F ) = suc z -> Lim dom recs ( F ) ) | 
						
							| 40 |  | id |  |-  ( Lim dom recs ( F ) -> Lim dom recs ( F ) ) | 
						
							| 41 | 13 39 40 | 3jaoi |  |-  ( ( dom recs ( F ) = (/) \/ E. z e. On dom recs ( F ) = suc z \/ Lim dom recs ( F ) ) -> Lim dom recs ( F ) ) | 
						
							| 42 | 4 41 | ax-mp |  |-  Lim dom recs ( F ) |