Description: Lemma for transfinite recursion. Let A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in A for later use. (Contributed by NM, 9-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tfrlem3.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
Assertion | tfrlem3 | |- A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
2 | vex | |- g e. _V |
|
3 | 1 2 | tfrlem3a | |- ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) ) |
4 | 3 | abbi2i | |- A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) } |