Metamath Proof Explorer


Theorem tfrlem3

Description: Lemma for transfinite recursion. Let A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in A for later use. (Contributed by NM, 9-Apr-1995)

Ref Expression
Hypothesis tfrlem3.1
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
Assertion tfrlem3
|- A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) }

Proof

Step Hyp Ref Expression
1 tfrlem3.1
 |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
2 vex
 |-  g e. _V
3 1 2 tfrlem3a
 |-  ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) )
4 3 abbi2i
 |-  A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) }