| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tfrlem3.1 | 
							 |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
						
							| 2 | 
							
								
							 | 
							tfrlem3.2 | 
							 |-  G e. _V  | 
						
						
							| 3 | 
							
								
							 | 
							fneq12 | 
							 |-  ( ( f = G /\ x = z ) -> ( f Fn x <-> G Fn z ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> f = G )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> y = w )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							fveq12d | 
							 |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f ` y ) = ( G ` w ) )  | 
						
						
							| 7 | 
							
								4 5
							 | 
							reseq12d | 
							 |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f |` y ) = ( G |` w ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2d | 
							 |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( F ` ( f |` y ) ) = ( F ` ( G |` w ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqeq12d | 
							 |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( G ` w ) = ( F ` ( G |` w ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> x = z )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							cbvraldva2 | 
							 |-  ( ( f = G /\ x = z ) -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) <-> A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							anbi12d | 
							 |-  ( ( f = G /\ x = z ) -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							cbvrexdva | 
							 |-  ( f = G -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) )  | 
						
						
							| 14 | 
							
								2 13 1
							 | 
							elab2 | 
							 |-  ( G e. A <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) )  |