Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem3.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
|
tfrlem3.2 |
|- G e. _V |
3 |
|
fneq12 |
|- ( ( f = G /\ x = z ) -> ( f Fn x <-> G Fn z ) ) |
4 |
|
simpll |
|- ( ( ( f = G /\ x = z ) /\ y = w ) -> f = G ) |
5 |
|
simpr |
|- ( ( ( f = G /\ x = z ) /\ y = w ) -> y = w ) |
6 |
4 5
|
fveq12d |
|- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f ` y ) = ( G ` w ) ) |
7 |
4 5
|
reseq12d |
|- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f |` y ) = ( G |` w ) ) |
8 |
7
|
fveq2d |
|- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( F ` ( f |` y ) ) = ( F ` ( G |` w ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( G ` w ) = ( F ` ( G |` w ) ) ) ) |
10 |
|
simplr |
|- ( ( ( f = G /\ x = z ) /\ y = w ) -> x = z ) |
11 |
9 10
|
cbvraldva2 |
|- ( ( f = G /\ x = z ) -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) <-> A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) |
12 |
3 11
|
anbi12d |
|- ( ( f = G /\ x = z ) -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) ) |
13 |
12
|
cbvrexdva |
|- ( f = G -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) ) |
14 |
2 13 1
|
elab2 |
|- ( G e. A <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) |