| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem3.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 |  | tfrlem3.2 |  |-  G e. _V | 
						
							| 3 |  | fneq12 |  |-  ( ( f = G /\ x = z ) -> ( f Fn x <-> G Fn z ) ) | 
						
							| 4 |  | simpll |  |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> f = G ) | 
						
							| 5 |  | simpr |  |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> y = w ) | 
						
							| 6 | 4 5 | fveq12d |  |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f ` y ) = ( G ` w ) ) | 
						
							| 7 | 4 5 | reseq12d |  |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f |` y ) = ( G |` w ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( F ` ( f |` y ) ) = ( F ` ( G |` w ) ) ) | 
						
							| 9 | 6 8 | eqeq12d |  |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( G ` w ) = ( F ` ( G |` w ) ) ) ) | 
						
							| 10 |  | simplr |  |-  ( ( ( f = G /\ x = z ) /\ y = w ) -> x = z ) | 
						
							| 11 | 9 10 | cbvraldva2 |  |-  ( ( f = G /\ x = z ) -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) <-> A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) | 
						
							| 12 | 3 11 | anbi12d |  |-  ( ( f = G /\ x = z ) -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) ) | 
						
							| 13 | 12 | cbvrexdva |  |-  ( f = G -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) ) | 
						
							| 14 | 2 13 1 | elab2 |  |-  ( G e. A <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) |