Metamath Proof Explorer


Theorem tfrlem4

Description: Lemma for transfinite recursion. A is the class of all "acceptable" functions, and F is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995)

Ref Expression
Hypothesis tfrlem.1
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
Assertion tfrlem4
|- ( g e. A -> Fun g )

Proof

Step Hyp Ref Expression
1 tfrlem.1
 |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
2 1 tfrlem3
 |-  A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) }
3 2 abeq2i
 |-  ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) )
4 fnfun
 |-  ( g Fn z -> Fun g )
5 4 adantr
 |-  ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> Fun g )
6 5 rexlimivw
 |-  ( E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> Fun g )
7 3 6 sylbi
 |-  ( g e. A -> Fun g )