Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
1
|
tfrlem3 |
|- A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) } |
3 |
2
|
abeq2i |
|- ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) ) |
4 |
|
fnfun |
|- ( g Fn z -> Fun g ) |
5 |
4
|
adantr |
|- ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> Fun g ) |
6 |
5
|
rexlimivw |
|- ( E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> Fun g ) |
7 |
3 6
|
sylbi |
|- ( g e. A -> Fun g ) |