Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
|
vex |
|- g e. _V |
3 |
1 2
|
tfrlem3a |
|- ( g e. A <-> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
4 |
|
vex |
|- h e. _V |
5 |
1 4
|
tfrlem3a |
|- ( h e. A <-> E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) |
6 |
|
reeanv |
|- ( E. z e. On E. w e. On ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) <-> ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) ) |
7 |
|
fveq2 |
|- ( a = x -> ( g ` a ) = ( g ` x ) ) |
8 |
|
fveq2 |
|- ( a = x -> ( h ` a ) = ( h ` x ) ) |
9 |
7 8
|
eqeq12d |
|- ( a = x -> ( ( g ` a ) = ( h ` a ) <-> ( g ` x ) = ( h ` x ) ) ) |
10 |
|
onin |
|- ( ( z e. On /\ w e. On ) -> ( z i^i w ) e. On ) |
11 |
10
|
3ad2ant1 |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) e. On ) |
12 |
|
simp2ll |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> g Fn z ) |
13 |
|
fnfun |
|- ( g Fn z -> Fun g ) |
14 |
12 13
|
syl |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> Fun g ) |
15 |
|
inss1 |
|- ( z i^i w ) C_ z |
16 |
12
|
fndmd |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> dom g = z ) |
17 |
15 16
|
sseqtrrid |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) C_ dom g ) |
18 |
14 17
|
jca |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( Fun g /\ ( z i^i w ) C_ dom g ) ) |
19 |
|
simp2rl |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> h Fn w ) |
20 |
|
fnfun |
|- ( h Fn w -> Fun h ) |
21 |
19 20
|
syl |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> Fun h ) |
22 |
|
inss2 |
|- ( z i^i w ) C_ w |
23 |
19
|
fndmd |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> dom h = w ) |
24 |
22 23
|
sseqtrrid |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) C_ dom h ) |
25 |
21 24
|
jca |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( Fun h /\ ( z i^i w ) C_ dom h ) ) |
26 |
|
simp2lr |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) |
27 |
|
ssralv |
|- ( ( z i^i w ) C_ z -> ( A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
28 |
15 26 27
|
mpsyl |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( F ` ( g |` a ) ) ) |
29 |
|
simp2rr |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) |
30 |
|
ssralv |
|- ( ( z i^i w ) C_ w -> ( A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) -> A. a e. ( z i^i w ) ( h ` a ) = ( F ` ( h |` a ) ) ) ) |
31 |
22 29 30
|
mpsyl |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( h ` a ) = ( F ` ( h |` a ) ) ) |
32 |
11 18 25 28 31
|
tfrlem1 |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( h ` a ) ) |
33 |
|
simp3l |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x g u ) |
34 |
|
fnbr |
|- ( ( g Fn z /\ x g u ) -> x e. z ) |
35 |
12 33 34
|
syl2anc |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. z ) |
36 |
|
simp3r |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x h v ) |
37 |
|
fnbr |
|- ( ( h Fn w /\ x h v ) -> x e. w ) |
38 |
19 36 37
|
syl2anc |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. w ) |
39 |
35 38
|
elind |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. ( z i^i w ) ) |
40 |
9 32 39
|
rspcdva |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( g ` x ) = ( h ` x ) ) |
41 |
|
funbrfv |
|- ( Fun g -> ( x g u -> ( g ` x ) = u ) ) |
42 |
14 33 41
|
sylc |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( g ` x ) = u ) |
43 |
|
funbrfv |
|- ( Fun h -> ( x h v -> ( h ` x ) = v ) ) |
44 |
21 36 43
|
sylc |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( h ` x ) = v ) |
45 |
40 42 44
|
3eqtr3d |
|- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> u = v ) |
46 |
45
|
3exp |
|- ( ( z e. On /\ w e. On ) -> ( ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) ) |
47 |
46
|
rexlimivv |
|- ( E. z e. On E. w e. On ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
48 |
6 47
|
sylbir |
|- ( ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
49 |
3 5 48
|
syl2anb |
|- ( ( g e. A /\ h e. A ) -> ( ( x g u /\ x h v ) -> u = v ) ) |