Metamath Proof Explorer


Theorem tfrlem6

Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypothesis tfrlem.1
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
Assertion tfrlem6
|- Rel recs ( F )

Proof

Step Hyp Ref Expression
1 tfrlem.1
 |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
2 reluni
 |-  ( Rel U. A <-> A. g e. A Rel g )
3 1 tfrlem4
 |-  ( g e. A -> Fun g )
4 funrel
 |-  ( Fun g -> Rel g )
5 3 4 syl
 |-  ( g e. A -> Rel g )
6 2 5 mprgbir
 |-  Rel U. A
7 1 recsfval
 |-  recs ( F ) = U. A
8 7 releqi
 |-  ( Rel recs ( F ) <-> Rel U. A )
9 6 8 mpbir
 |-  Rel recs ( F )