Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem6 | |- Rel recs ( F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | reluni | |- ( Rel U. A <-> A. g e. A Rel g ) |
|
| 3 | 1 | tfrlem4 | |- ( g e. A -> Fun g ) |
| 4 | funrel | |- ( Fun g -> Rel g ) |
|
| 5 | 3 4 | syl | |- ( g e. A -> Rel g ) |
| 6 | 2 5 | mprgbir | |- Rel U. A |
| 7 | 1 | recsfval | |- recs ( F ) = U. A |
| 8 | 7 | releqi | |- ( Rel recs ( F ) <-> Rel U. A ) |
| 9 | 6 8 | mpbir | |- Rel recs ( F ) |