Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
1
|
tfrlem6 |
|- Rel recs ( F ) |
3 |
1
|
recsfval |
|- recs ( F ) = U. A |
4 |
3
|
eleq2i |
|- ( <. x , u >. e. recs ( F ) <-> <. x , u >. e. U. A ) |
5 |
|
eluni |
|- ( <. x , u >. e. U. A <-> E. g ( <. x , u >. e. g /\ g e. A ) ) |
6 |
4 5
|
bitri |
|- ( <. x , u >. e. recs ( F ) <-> E. g ( <. x , u >. e. g /\ g e. A ) ) |
7 |
3
|
eleq2i |
|- ( <. x , v >. e. recs ( F ) <-> <. x , v >. e. U. A ) |
8 |
|
eluni |
|- ( <. x , v >. e. U. A <-> E. h ( <. x , v >. e. h /\ h e. A ) ) |
9 |
7 8
|
bitri |
|- ( <. x , v >. e. recs ( F ) <-> E. h ( <. x , v >. e. h /\ h e. A ) ) |
10 |
6 9
|
anbi12i |
|- ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) <-> ( E. g ( <. x , u >. e. g /\ g e. A ) /\ E. h ( <. x , v >. e. h /\ h e. A ) ) ) |
11 |
|
exdistrv |
|- ( E. g E. h ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) <-> ( E. g ( <. x , u >. e. g /\ g e. A ) /\ E. h ( <. x , v >. e. h /\ h e. A ) ) ) |
12 |
10 11
|
bitr4i |
|- ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) <-> E. g E. h ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) ) |
13 |
|
df-br |
|- ( x g u <-> <. x , u >. e. g ) |
14 |
|
df-br |
|- ( x h v <-> <. x , v >. e. h ) |
15 |
13 14
|
anbi12i |
|- ( ( x g u /\ x h v ) <-> ( <. x , u >. e. g /\ <. x , v >. e. h ) ) |
16 |
1
|
tfrlem5 |
|- ( ( g e. A /\ h e. A ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
17 |
16
|
impcom |
|- ( ( ( x g u /\ x h v ) /\ ( g e. A /\ h e. A ) ) -> u = v ) |
18 |
15 17
|
sylanbr |
|- ( ( ( <. x , u >. e. g /\ <. x , v >. e. h ) /\ ( g e. A /\ h e. A ) ) -> u = v ) |
19 |
18
|
an4s |
|- ( ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) -> u = v ) |
20 |
19
|
exlimivv |
|- ( E. g E. h ( ( <. x , u >. e. g /\ g e. A ) /\ ( <. x , v >. e. h /\ h e. A ) ) -> u = v ) |
21 |
12 20
|
sylbi |
|- ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) |
22 |
21
|
ax-gen |
|- A. v ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) |
23 |
22
|
gen2 |
|- A. x A. u A. v ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) |
24 |
|
dffun4 |
|- ( Fun recs ( F ) <-> ( Rel recs ( F ) /\ A. x A. u A. v ( ( <. x , u >. e. recs ( F ) /\ <. x , v >. e. recs ( F ) ) -> u = v ) ) ) |
25 |
2 23 24
|
mpbir2an |
|- Fun recs ( F ) |