Metamath Proof Explorer


Theorem tfrlem8

Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994) (Proof shortened by Alan Sare, 11-Mar-2008)

Ref Expression
Hypothesis tfrlem.1
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
Assertion tfrlem8
|- Ord dom recs ( F )

Proof

Step Hyp Ref Expression
1 tfrlem.1
 |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) }
2 1 tfrlem3
 |-  A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) }
3 2 abeq2i
 |-  ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) )
4 fndm
 |-  ( g Fn z -> dom g = z )
5 4 adantr
 |-  ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g = z )
6 5 eleq1d
 |-  ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> ( dom g e. On <-> z e. On ) )
7 6 biimprcd
 |-  ( z e. On -> ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On ) )
8 7 rexlimiv
 |-  ( E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On )
9 3 8 sylbi
 |-  ( g e. A -> dom g e. On )
10 eleq1a
 |-  ( dom g e. On -> ( z = dom g -> z e. On ) )
11 9 10 syl
 |-  ( g e. A -> ( z = dom g -> z e. On ) )
12 11 rexlimiv
 |-  ( E. g e. A z = dom g -> z e. On )
13 12 abssi
 |-  { z | E. g e. A z = dom g } C_ On
14 ssorduni
 |-  ( { z | E. g e. A z = dom g } C_ On -> Ord U. { z | E. g e. A z = dom g } )
15 13 14 ax-mp
 |-  Ord U. { z | E. g e. A z = dom g }
16 1 recsfval
 |-  recs ( F ) = U. A
17 16 dmeqi
 |-  dom recs ( F ) = dom U. A
18 dmuni
 |-  dom U. A = U_ g e. A dom g
19 vex
 |-  g e. _V
20 19 dmex
 |-  dom g e. _V
21 20 dfiun2
 |-  U_ g e. A dom g = U. { z | E. g e. A z = dom g }
22 17 18 21 3eqtri
 |-  dom recs ( F ) = U. { z | E. g e. A z = dom g }
23 ordeq
 |-  ( dom recs ( F ) = U. { z | E. g e. A z = dom g } -> ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } ) )
24 22 23 ax-mp
 |-  ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } )
25 15 24 mpbir
 |-  Ord dom recs ( F )