| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
| 2 |
1
|
tfrlem3 |
|- A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) } |
| 3 |
2
|
eqabri |
|- ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) ) |
| 4 |
|
fndm |
|- ( g Fn z -> dom g = z ) |
| 5 |
4
|
adantr |
|- ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g = z ) |
| 6 |
5
|
eleq1d |
|- ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> ( dom g e. On <-> z e. On ) ) |
| 7 |
6
|
biimprcd |
|- ( z e. On -> ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On ) ) |
| 8 |
7
|
rexlimiv |
|- ( E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On ) |
| 9 |
3 8
|
sylbi |
|- ( g e. A -> dom g e. On ) |
| 10 |
|
eleq1a |
|- ( dom g e. On -> ( z = dom g -> z e. On ) ) |
| 11 |
9 10
|
syl |
|- ( g e. A -> ( z = dom g -> z e. On ) ) |
| 12 |
11
|
rexlimiv |
|- ( E. g e. A z = dom g -> z e. On ) |
| 13 |
12
|
abssi |
|- { z | E. g e. A z = dom g } C_ On |
| 14 |
|
ssorduni |
|- ( { z | E. g e. A z = dom g } C_ On -> Ord U. { z | E. g e. A z = dom g } ) |
| 15 |
13 14
|
ax-mp |
|- Ord U. { z | E. g e. A z = dom g } |
| 16 |
1
|
recsfval |
|- recs ( F ) = U. A |
| 17 |
16
|
dmeqi |
|- dom recs ( F ) = dom U. A |
| 18 |
|
dmuni |
|- dom U. A = U_ g e. A dom g |
| 19 |
|
vex |
|- g e. _V |
| 20 |
19
|
dmex |
|- dom g e. _V |
| 21 |
20
|
dfiun2 |
|- U_ g e. A dom g = U. { z | E. g e. A z = dom g } |
| 22 |
17 18 21
|
3eqtri |
|- dom recs ( F ) = U. { z | E. g e. A z = dom g } |
| 23 |
|
ordeq |
|- ( dom recs ( F ) = U. { z | E. g e. A z = dom g } -> ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } ) ) |
| 24 |
22 23
|
ax-mp |
|- ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } ) |
| 25 |
15 24
|
mpbir |
|- Ord dom recs ( F ) |