Step |
Hyp |
Ref |
Expression |
1 |
|
tfrlem.1 |
|- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
2 |
1
|
tfrlem7 |
|- Fun recs ( F ) |
3 |
|
funfvop |
|- ( ( Fun recs ( F ) /\ B e. dom recs ( F ) ) -> <. B , ( recs ( F ) ` B ) >. e. recs ( F ) ) |
4 |
2 3
|
mpan |
|- ( B e. dom recs ( F ) -> <. B , ( recs ( F ) ` B ) >. e. recs ( F ) ) |
5 |
1
|
recsfval |
|- recs ( F ) = U. A |
6 |
5
|
eleq2i |
|- ( <. B , ( recs ( F ) ` B ) >. e. recs ( F ) <-> <. B , ( recs ( F ) ` B ) >. e. U. A ) |
7 |
|
eluni |
|- ( <. B , ( recs ( F ) ` B ) >. e. U. A <-> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) |
8 |
6 7
|
bitri |
|- ( <. B , ( recs ( F ) ` B ) >. e. recs ( F ) <-> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) |
9 |
4 8
|
sylib |
|- ( B e. dom recs ( F ) -> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) |
10 |
|
simprr |
|- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> g e. A ) |
11 |
|
vex |
|- g e. _V |
12 |
1 11
|
tfrlem3a |
|- ( g e. A <-> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
13 |
10 12
|
sylib |
|- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
14 |
2
|
a1i |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> Fun recs ( F ) ) |
15 |
|
simplrr |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g e. A ) |
16 |
|
elssuni |
|- ( g e. A -> g C_ U. A ) |
17 |
15 16
|
syl |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g C_ U. A ) |
18 |
17 5
|
sseqtrrdi |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g C_ recs ( F ) ) |
19 |
|
fndm |
|- ( g Fn z -> dom g = z ) |
20 |
19
|
ad2antll |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> dom g = z ) |
21 |
|
simprl |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> z e. On ) |
22 |
20 21
|
eqeltrd |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> dom g e. On ) |
23 |
|
eloni |
|- ( dom g e. On -> Ord dom g ) |
24 |
22 23
|
syl |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> Ord dom g ) |
25 |
|
simpll |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B e. dom recs ( F ) ) |
26 |
|
fvexd |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) ` B ) e. _V ) |
27 |
|
simplrl |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> <. B , ( recs ( F ) ` B ) >. e. g ) |
28 |
|
df-br |
|- ( B g ( recs ( F ) ` B ) <-> <. B , ( recs ( F ) ` B ) >. e. g ) |
29 |
27 28
|
sylibr |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B g ( recs ( F ) ` B ) ) |
30 |
|
breldmg |
|- ( ( B e. dom recs ( F ) /\ ( recs ( F ) ` B ) e. _V /\ B g ( recs ( F ) ` B ) ) -> B e. dom g ) |
31 |
25 26 29 30
|
syl3anc |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B e. dom g ) |
32 |
|
ordelss |
|- ( ( Ord dom g /\ B e. dom g ) -> B C_ dom g ) |
33 |
24 31 32
|
syl2anc |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B C_ dom g ) |
34 |
|
fun2ssres |
|- ( ( Fun recs ( F ) /\ g C_ recs ( F ) /\ B C_ dom g ) -> ( recs ( F ) |` B ) = ( g |` B ) ) |
35 |
14 18 33 34
|
syl3anc |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) |` B ) = ( g |` B ) ) |
36 |
11
|
resex |
|- ( g |` B ) e. _V |
37 |
36
|
a1i |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( g |` B ) e. _V ) |
38 |
35 37
|
eqeltrd |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) |` B ) e. _V ) |
39 |
38
|
expr |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ z e. On ) -> ( g Fn z -> ( recs ( F ) |` B ) e. _V ) ) |
40 |
39
|
adantrd |
|- ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ z e. On ) -> ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) -> ( recs ( F ) |` B ) e. _V ) ) |
41 |
40
|
rexlimdva |
|- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) -> ( recs ( F ) |` B ) e. _V ) ) |
42 |
13 41
|
mpd |
|- ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> ( recs ( F ) |` B ) e. _V ) |
43 |
9 42
|
exlimddv |
|- ( B e. dom recs ( F ) -> ( recs ( F ) |` B ) e. _V ) |