| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 | 1 | tfrlem7 |  |-  Fun recs ( F ) | 
						
							| 3 |  | funfvop |  |-  ( ( Fun recs ( F ) /\ B e. dom recs ( F ) ) -> <. B , ( recs ( F ) ` B ) >. e. recs ( F ) ) | 
						
							| 4 | 2 3 | mpan |  |-  ( B e. dom recs ( F ) -> <. B , ( recs ( F ) ` B ) >. e. recs ( F ) ) | 
						
							| 5 | 1 | recsfval |  |-  recs ( F ) = U. A | 
						
							| 6 | 5 | eleq2i |  |-  ( <. B , ( recs ( F ) ` B ) >. e. recs ( F ) <-> <. B , ( recs ( F ) ` B ) >. e. U. A ) | 
						
							| 7 |  | eluni |  |-  ( <. B , ( recs ( F ) ` B ) >. e. U. A <-> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) | 
						
							| 8 | 6 7 | bitri |  |-  ( <. B , ( recs ( F ) ` B ) >. e. recs ( F ) <-> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) | 
						
							| 9 | 4 8 | sylib |  |-  ( B e. dom recs ( F ) -> E. g ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) | 
						
							| 10 |  | simprr |  |-  ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> g e. A ) | 
						
							| 11 |  | vex |  |-  g e. _V | 
						
							| 12 | 1 11 | tfrlem3a |  |-  ( g e. A <-> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) | 
						
							| 13 | 10 12 | sylib |  |-  ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) | 
						
							| 14 | 2 | a1i |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> Fun recs ( F ) ) | 
						
							| 15 |  | simplrr |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g e. A ) | 
						
							| 16 |  | elssuni |  |-  ( g e. A -> g C_ U. A ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g C_ U. A ) | 
						
							| 18 | 17 5 | sseqtrrdi |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> g C_ recs ( F ) ) | 
						
							| 19 |  | fndm |  |-  ( g Fn z -> dom g = z ) | 
						
							| 20 | 19 | ad2antll |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> dom g = z ) | 
						
							| 21 |  | simprl |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> z e. On ) | 
						
							| 22 | 20 21 | eqeltrd |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> dom g e. On ) | 
						
							| 23 |  | eloni |  |-  ( dom g e. On -> Ord dom g ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> Ord dom g ) | 
						
							| 25 |  | simpll |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B e. dom recs ( F ) ) | 
						
							| 26 |  | fvexd |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) ` B ) e. _V ) | 
						
							| 27 |  | simplrl |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> <. B , ( recs ( F ) ` B ) >. e. g ) | 
						
							| 28 |  | df-br |  |-  ( B g ( recs ( F ) ` B ) <-> <. B , ( recs ( F ) ` B ) >. e. g ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B g ( recs ( F ) ` B ) ) | 
						
							| 30 |  | breldmg |  |-  ( ( B e. dom recs ( F ) /\ ( recs ( F ) ` B ) e. _V /\ B g ( recs ( F ) ` B ) ) -> B e. dom g ) | 
						
							| 31 | 25 26 29 30 | syl3anc |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B e. dom g ) | 
						
							| 32 |  | ordelss |  |-  ( ( Ord dom g /\ B e. dom g ) -> B C_ dom g ) | 
						
							| 33 | 24 31 32 | syl2anc |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> B C_ dom g ) | 
						
							| 34 |  | fun2ssres |  |-  ( ( Fun recs ( F ) /\ g C_ recs ( F ) /\ B C_ dom g ) -> ( recs ( F ) |` B ) = ( g |` B ) ) | 
						
							| 35 | 14 18 33 34 | syl3anc |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) |` B ) = ( g |` B ) ) | 
						
							| 36 | 11 | resex |  |-  ( g |` B ) e. _V | 
						
							| 37 | 36 | a1i |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( g |` B ) e. _V ) | 
						
							| 38 | 35 37 | eqeltrd |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ ( z e. On /\ g Fn z ) ) -> ( recs ( F ) |` B ) e. _V ) | 
						
							| 39 | 38 | expr |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ z e. On ) -> ( g Fn z -> ( recs ( F ) |` B ) e. _V ) ) | 
						
							| 40 | 39 | adantrd |  |-  ( ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) /\ z e. On ) -> ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) -> ( recs ( F ) |` B ) e. _V ) ) | 
						
							| 41 | 40 | rexlimdva |  |-  ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) -> ( recs ( F ) |` B ) e. _V ) ) | 
						
							| 42 | 13 41 | mpd |  |-  ( ( B e. dom recs ( F ) /\ ( <. B , ( recs ( F ) ` B ) >. e. g /\ g e. A ) ) -> ( recs ( F ) |` B ) e. _V ) | 
						
							| 43 | 9 42 | exlimddv |  |-  ( B e. dom recs ( F ) -> ( recs ( F ) |` B ) e. _V ) |