| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgsas.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tgsas.m | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tgsas.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tgsas.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgsas.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							tgsas.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							tgsas.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							tgsas.d | 
							 |-  ( ph -> D e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							tgsas.e | 
							 |-  ( ph -> E e. P )  | 
						
						
							| 10 | 
							
								
							 | 
							tgsas.f | 
							 |-  ( ph -> F e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							tgasa.l | 
							 |-  L = ( LineG ` G )  | 
						
						
							| 12 | 
							
								
							 | 
							tgasa.1 | 
							 |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) )  | 
						
						
							| 13 | 
							
								
							 | 
							tgasa.2 | 
							 |-  ( ph -> ( A .- B ) = ( D .- E ) )  | 
						
						
							| 14 | 
							
								
							 | 
							tgasa.3 | 
							 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )  | 
						
						
							| 15 | 
							
								
							 | 
							tgasa.4 | 
							 |-  ( ph -> <" C A B "> ( cgrA ` G ) <" F D E "> )  | 
						
						
							| 16 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( E .- f ) = ( B .- C ) )  | 
						
						
							| 17 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> G e. TarskiG )  | 
						
						
							| 18 | 
							
								10
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F e. P )  | 
						
						
							| 19 | 
							
								8
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> D e. P )  | 
						
						
							| 20 | 
							
								9
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E e. P )  | 
						
						
							| 21 | 
							
								1 3 2 4 5 6 7 8 9 10 14 11 12
							 | 
							cgrancol | 
							 |-  ( ph -> -. ( F e. ( D L E ) \/ D = E ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. ( F e. ( D L E ) \/ D = E ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( hlG ` G ) = ( hlG ` G )  | 
						
						
							| 24 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. P )  | 
						
						
							| 25 | 
							
								7
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> C e. P )  | 
						
						
							| 26 | 
							
								5
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> A e. P )  | 
						
						
							| 27 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> B e. P )  | 
						
						
							| 28 | 
							
								12
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. ( C e. ( A L B ) \/ A = B ) )  | 
						
						
							| 29 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> G e. TarskiG )  | 
						
						
							| 30 | 
							
								8
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> D e. P )  | 
						
						
							| 31 | 
							
								9
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> E e. P )  | 
						
						
							| 32 | 
							
								10
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> F e. P )  | 
						
						
							| 33 | 
							
								5
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> A e. P )  | 
						
						
							| 34 | 
							
								6
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> B e. P )  | 
						
						
							| 35 | 
							
								7
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> C e. P )  | 
						
						
							| 36 | 
							
								1 3 4 23 5 6 7 8 9 10 14
							 | 
							cgracom | 
							 |-  ( ph -> <" D E F "> ( cgrA ` G ) <" A B C "> )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> <" D E F "> ( cgrA ` G ) <" A B C "> )  | 
						
						
							| 38 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( E e. ( D L F ) \/ D = F ) )  | 
						
						
							| 39 | 
							
								1 11 3 29 30 32 31 38
							 | 
							colcom | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( E e. ( F L D ) \/ F = D ) )  | 
						
						
							| 40 | 
							
								1 11 3 29 32 30 31 39
							 | 
							colrot1 | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( F e. ( D L E ) \/ D = E ) )  | 
						
						
							| 41 | 
							
								1 3 2 29 30 31 32 33 34 35 37 11 40
							 | 
							cgracol | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( C e. ( A L B ) \/ A = B ) )  | 
						
						
							| 42 | 
							
								12
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> -. ( C e. ( A L B ) \/ A = B ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							pm2.65da | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. ( E e. ( D L F ) \/ D = F ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							 |-  ( cgrG ` G ) = ( cgrG ` G )  | 
						
						
							| 45 | 
							
								14
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> )  | 
						
						
							| 46 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hlG ` G ) ` E ) F )  | 
						
						
							| 47 | 
							
								1 3 23 17 26 27 25 19 20 18 45 24 46
							 | 
							cgrahl2 | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E f "> )  | 
						
						
							| 48 | 
							
								1 3 23 4 5 6 7 8 9 10 14
							 | 
							cgrane1 | 
							 |-  ( ph -> A =/= B )  | 
						
						
							| 49 | 
							
								1 3 23 5 5 6 4 48
							 | 
							hlid | 
							 |-  ( ph -> A ( ( hlG ` G ) ` B ) A )  | 
						
						
							| 50 | 
							
								49
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> A ( ( hlG ` G ) ` B ) A )  | 
						
						
							| 51 | 
							
								1 3 23 4 5 6 7 8 9 10 14
							 | 
							cgrane2 | 
							 |-  ( ph -> B =/= C )  | 
						
						
							| 52 | 
							
								51
							 | 
							necomd | 
							 |-  ( ph -> C =/= B )  | 
						
						
							| 53 | 
							
								1 3 23 7 5 6 4 52
							 | 
							hlid | 
							 |-  ( ph -> C ( ( hlG ` G ) ` B ) C )  | 
						
						
							| 54 | 
							
								53
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> C ( ( hlG ` G ) ` B ) C )  | 
						
						
							| 55 | 
							
								1 2 3 4 5 6 8 9 13
							 | 
							tgcgrcomlr | 
							 |-  ( ph -> ( B .- A ) = ( E .- D ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( B .- A ) = ( E .- D ) )  | 
						
						
							| 57 | 
							
								16
							 | 
							eqcomd | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( B .- C ) = ( E .- f ) )  | 
						
						
							| 58 | 
							
								1 3 23 17 26 27 25 19 20 24 47 26 2 25 50 54 56 57
							 | 
							cgracgr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( A .- C ) = ( D .- f ) )  | 
						
						
							| 59 | 
							
								1 2 3 17 26 25 19 24 58
							 | 
							tgcgrcomlr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( C .- A ) = ( f .- D ) )  | 
						
						
							| 60 | 
							
								13
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( A .- B ) = ( D .- E ) )  | 
						
						
							| 61 | 
							
								1 2 44 17 25 26 27 24 19 20 59 60 57
							 | 
							trgcgr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrG ` G ) <" f D E "> )  | 
						
						
							| 62 | 
							
								1 3 11 4 7 5 6 12
							 | 
							ncolne1 | 
							 |-  ( ph -> C =/= A )  | 
						
						
							| 63 | 
							
								62
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> C =/= A )  | 
						
						
							| 64 | 
							
								1 2 3 17 25 26 24 19 59 63
							 | 
							tgcgrneq | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f =/= D )  | 
						
						
							| 65 | 
							
								1 3 23 24 18 19 17 64
							 | 
							hlid | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hlG ` G ) ` D ) f )  | 
						
						
							| 66 | 
							
								1 3 23 4 7 5 6 10 8 9 15
							 | 
							cgrane4 | 
							 |-  ( ph -> D =/= E )  | 
						
						
							| 67 | 
							
								66
							 | 
							necomd | 
							 |-  ( ph -> E =/= D )  | 
						
						
							| 68 | 
							
								1 3 23 9 5 8 4 67
							 | 
							hlid | 
							 |-  ( ph -> E ( ( hlG ` G ) ` D ) E )  | 
						
						
							| 69 | 
							
								68
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E ( ( hlG ` G ) ` D ) E )  | 
						
						
							| 70 | 
							
								1 3 23 17 25 26 27 24 19 20 24 20 61 65 69
							 | 
							iscgrad | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrA ` G ) <" f D E "> )  | 
						
						
							| 71 | 
							
								66
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> D =/= E )  | 
						
						
							| 72 | 
							
								1 3 17 23 24 19 20 64 71
							 | 
							cgraswap | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" f D E "> ( cgrA ` G ) <" E D f "> )  | 
						
						
							| 73 | 
							
								1 3 17 23 25 26 27 24 19 20 70 20 19 24 72
							 | 
							cgratr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrA ` G ) <" E D f "> )  | 
						
						
							| 74 | 
							
								1 3 23 4 7 5 6 10 8 9 15
							 | 
							cgrane3 | 
							 |-  ( ph -> D =/= F )  | 
						
						
							| 75 | 
							
								74
							 | 
							necomd | 
							 |-  ( ph -> F =/= D )  | 
						
						
							| 76 | 
							
								1 3 4 23 10 8 9 75 66
							 | 
							cgraswap | 
							 |-  ( ph -> <" F D E "> ( cgrA ` G ) <" E D F "> )  | 
						
						
							| 77 | 
							
								1 3 4 23 7 5 6 10 8 9 15 9 8 10 76
							 | 
							cgratr | 
							 |-  ( ph -> <" C A B "> ( cgrA ` G ) <" E D F "> )  | 
						
						
							| 78 | 
							
								77
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrA ` G ) <" E D F "> )  | 
						
						
							| 79 | 
							
								1 3 11 4 9 8 67
							 | 
							tgelrnln | 
							 |-  ( ph -> ( E L D ) e. ran L )  | 
						
						
							| 80 | 
							
								79
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( E L D ) e. ran L )  | 
						
						
							| 81 | 
							
								
							 | 
							simpl | 
							 |-  ( ( a = u /\ b = v ) -> a = u )  | 
						
						
							| 82 | 
							
								81
							 | 
							eleq1d | 
							 |-  ( ( a = u /\ b = v ) -> ( a e. ( P \ ( E L D ) ) <-> u e. ( P \ ( E L D ) ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							simpr | 
							 |-  ( ( a = u /\ b = v ) -> b = v )  | 
						
						
							| 84 | 
							
								83
							 | 
							eleq1d | 
							 |-  ( ( a = u /\ b = v ) -> ( b e. ( P \ ( E L D ) ) <-> v e. ( P \ ( E L D ) ) ) )  | 
						
						
							| 85 | 
							
								82 84
							 | 
							anbi12d | 
							 |-  ( ( a = u /\ b = v ) -> ( ( a e. ( P \ ( E L D ) ) /\ b e. ( P \ ( E L D ) ) ) <-> ( u e. ( P \ ( E L D ) ) /\ v e. ( P \ ( E L D ) ) ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> t = w )  | 
						
						
							| 87 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> a = u )  | 
						
						
							| 88 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> b = v )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							oveq12d | 
							 |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> ( a I b ) = ( u I v ) )  | 
						
						
							| 90 | 
							
								86 89
							 | 
							eleq12d | 
							 |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> ( t e. ( a I b ) <-> w e. ( u I v ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							cbvrexdva | 
							 |-  ( ( a = u /\ b = v ) -> ( E. t e. ( E L D ) t e. ( a I b ) <-> E. w e. ( E L D ) w e. ( u I v ) ) )  | 
						
						
							| 92 | 
							
								85 91
							 | 
							anbi12d | 
							 |-  ( ( a = u /\ b = v ) -> ( ( ( a e. ( P \ ( E L D ) ) /\ b e. ( P \ ( E L D ) ) ) /\ E. t e. ( E L D ) t e. ( a I b ) ) <-> ( ( u e. ( P \ ( E L D ) ) /\ v e. ( P \ ( E L D ) ) ) /\ E. w e. ( E L D ) w e. ( u I v ) ) ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							cbvopabv | 
							 |-  { <. a , b >. | ( ( a e. ( P \ ( E L D ) ) /\ b e. ( P \ ( E L D ) ) ) /\ E. t e. ( E L D ) t e. ( a I b ) ) } = { <. u , v >. | ( ( u e. ( P \ ( E L D ) ) /\ v e. ( P \ ( E L D ) ) ) /\ E. w e. ( E L D ) w e. ( u I v ) ) } | 
						
						
							| 94 | 
							
								1 3 11 4 9 8 67
							 | 
							tglinerflx1 | 
							 |-  ( ph -> E e. ( E L D ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E e. ( E L D ) )  | 
						
						
							| 96 | 
							
								1 11 3 4 8 9 10 21
							 | 
							ncolcom | 
							 |-  ( ph -> -. ( F e. ( E L D ) \/ E = D ) )  | 
						
						
							| 97 | 
							
								
							 | 
							pm2.45 | 
							 |-  ( -. ( F e. ( E L D ) \/ E = D ) -> -. F e. ( E L D ) )  | 
						
						
							| 98 | 
							
								96 97
							 | 
							syl | 
							 |-  ( ph -> -. F e. ( E L D ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. F e. ( E L D ) )  | 
						
						
							| 100 | 
							
								1 3 23 24 18 20 17 46
							 | 
							hlcomd | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F ( ( hlG ` G ) ` E ) f )  | 
						
						
							| 101 | 
							
								1 3 11 17 80 20 93 23 95 18 24 99 100
							 | 
							hphl | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F ( ( hpG ` G ) ` ( E L D ) ) f )  | 
						
						
							| 102 | 
							
								1 3 11 17 80 18 93 24 101
							 | 
							hpgcom | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hpG ` G ) ` ( E L D ) ) F )  | 
						
						
							| 103 | 
							
								1 3 11 4 79 10 93 98
							 | 
							hpgid | 
							 |-  ( ph -> F ( ( hpG ` G ) ` ( E L D ) ) F )  | 
						
						
							| 104 | 
							
								103
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F ( ( hpG ` G ) ` ( E L D ) ) F )  | 
						
						
							| 105 | 
							
								1 3 2 17 25 26 27 20 19 18 11 28 43 24 18 23 73 78 102 104
							 | 
							acopyeu | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hlG ` G ) ` D ) F )  | 
						
						
							| 106 | 
							
								1 3 23 24 18 19 17 11 105
							 | 
							hlln | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. ( F L D ) )  | 
						
						
							| 107 | 
							
								1 3 11 4 10 8 75
							 | 
							tglinerflx1 | 
							 |-  ( ph -> F e. ( F L D ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F e. ( F L D ) )  | 
						
						
							| 109 | 
							
								1 3 23 4 5 6 7 8 9 10 14
							 | 
							cgrane4 | 
							 |-  ( ph -> E =/= F )  | 
						
						
							| 110 | 
							
								109
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E =/= F )  | 
						
						
							| 111 | 
							
								1 3 23 24 18 20 17 11 46
							 | 
							hlln | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. ( F L E ) )  | 
						
						
							| 112 | 
							
								1 3 11 17 20 18 24 110 111
							 | 
							lncom | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. ( E L F ) )  | 
						
						
							| 113 | 
							
								1 3 11 17 20 18 110
							 | 
							tglinerflx2 | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F e. ( E L F ) )  | 
						
						
							| 114 | 
							
								1 3 11 17 18 19 20 18 22 106 108 112 113
							 | 
							tglineinteq | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f = F )  | 
						
						
							| 115 | 
							
								114
							 | 
							oveq2d | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( E .- f ) = ( E .- F ) )  | 
						
						
							| 116 | 
							
								16 115
							 | 
							eqtr3d | 
							 |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( B .- C ) = ( E .- F ) )  | 
						
						
							| 117 | 
							
								109
							 | 
							necomd | 
							 |-  ( ph -> F =/= E )  | 
						
						
							| 118 | 
							
								1 3 23 9 6 7 4 10 2 117 51
							 | 
							hlcgrex | 
							 |-  ( ph -> E. f e. P ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) )  | 
						
						
							| 119 | 
							
								116 118
							 | 
							r19.29a | 
							 |-  ( ph -> ( B .- C ) = ( E .- F ) )  |