| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgbtwntriv2.1 | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							tgbtwntriv2.2 | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							tgbtwncom.3 | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							tgbtwncom.4 | 
							 |-  ( ph -> B e. ( A I C ) )  | 
						
						
							| 9 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> G e. TarskiG )  | 
						
						
							| 10 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. P )  | 
						
						
							| 12 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( B I B ) )  | 
						
						
							| 13 | 
							
								1 2 3 9 10 11 12
							 | 
							axtgbtwnid | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B = x )  | 
						
						
							| 14 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( C I A ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. ( C I A ) )  | 
						
						
							| 16 | 
							
								1 2 3 4 6 7
							 | 
							tgbtwntriv2 | 
							 |-  ( ph -> C e. ( B I C ) )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 6 7 8 16
							 | 
							axtgpasch | 
							 |-  ( ph -> E. x e. P ( x e. ( B I B ) /\ x e. ( C I A ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							r19.29a | 
							 |-  ( ph -> B e. ( C I A ) )  |