Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tgbtwntriv2.1 |
|- ( ph -> A e. P ) |
6 |
|
tgbtwntriv2.2 |
|- ( ph -> B e. P ) |
7 |
|
tgbtwncom.3 |
|- ( ph -> C e. P ) |
8 |
|
tgbtwncom.4 |
|- ( ph -> B e. ( A I C ) ) |
9 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> G e. TarskiG ) |
10 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. P ) |
11 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. P ) |
12 |
|
simprl |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( B I B ) ) |
13 |
1 2 3 9 10 11 12
|
axtgbtwnid |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B = x ) |
14 |
|
simprr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( C I A ) ) |
15 |
13 14
|
eqeltrd |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. ( C I A ) ) |
16 |
1 2 3 4 6 7
|
tgbtwntriv2 |
|- ( ph -> C e. ( B I C ) ) |
17 |
1 2 3 4 5 6 7 6 7 8 16
|
axtgpasch |
|- ( ph -> E. x e. P ( x e. ( B I B ) /\ x e. ( C I A ) ) ) |
18 |
15 17
|
r19.29a |
|- ( ph -> B e. ( C I A ) ) |