Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tgbtwntriv2.1 |
|- ( ph -> A e. P ) |
6 |
|
tgbtwntriv2.2 |
|- ( ph -> B e. P ) |
7 |
|
tgbtwncomb.3 |
|- ( ph -> C e. P ) |
8 |
4
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) |
9 |
5
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> A e. P ) |
10 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. P ) |
11 |
7
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> C e. P ) |
12 |
|
simpr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) |
13 |
1 2 3 8 9 10 11 12
|
tgbtwncom |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( C I A ) ) |
14 |
4
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG ) |
15 |
7
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> C e. P ) |
16 |
6
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. P ) |
17 |
5
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. P ) |
18 |
|
simpr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) ) |
19 |
1 2 3 14 15 16 17 18
|
tgbtwncom |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( A I C ) ) |
20 |
13 19
|
impbida |
|- ( ph -> ( B e. ( A I C ) <-> B e. ( C I A ) ) ) |