Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn1.p |
|- P = ( Base ` G ) |
2 |
|
tgbtwnconn1.i |
|- I = ( Itv ` G ) |
3 |
|
tgbtwnconn1.g |
|- ( ph -> G e. TarskiG ) |
4 |
|
tgbtwnconn1.a |
|- ( ph -> A e. P ) |
5 |
|
tgbtwnconn1.b |
|- ( ph -> B e. P ) |
6 |
|
tgbtwnconn1.c |
|- ( ph -> C e. P ) |
7 |
|
tgbtwnconn1.d |
|- ( ph -> D e. P ) |
8 |
|
tgbtwnconn1.1 |
|- ( ph -> A =/= B ) |
9 |
|
tgbtwnconn1.2 |
|- ( ph -> B e. ( A I C ) ) |
10 |
|
tgbtwnconn1.3 |
|- ( ph -> B e. ( A I D ) ) |
11 |
|
simpllr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) |
12 |
11
|
simpld |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> D e. ( A I e ) ) |
13 |
12
|
adantr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> D e. ( A I e ) ) |
14 |
|
simpr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> C = e ) |
15 |
14
|
oveq2d |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> ( A I C ) = ( A I e ) ) |
16 |
13 15
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> D e. ( A I C ) ) |
17 |
16
|
olcd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
18 |
|
simprl |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> C e. ( A I f ) ) |
19 |
18
|
adantr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> C e. ( A I f ) ) |
20 |
|
simpr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> D = f ) |
21 |
20
|
oveq2d |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> ( A I D ) = ( A I f ) ) |
22 |
19 21
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> C e. ( A I D ) ) |
23 |
22
|
orcd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
24 |
|
df-ne |
|- ( C =/= e <-> -. C = e ) |
25 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> G e. TarskiG ) |
26 |
25
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> G e. TarskiG ) |
27 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> A e. P ) |
28 |
27
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> A e. P ) |
29 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> B e. P ) |
30 |
29
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> B e. P ) |
31 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> C e. P ) |
32 |
31
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> C e. P ) |
33 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> D e. P ) |
34 |
33
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> D e. P ) |
35 |
|
simp-11l |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ph ) |
36 |
35 8
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> A =/= B ) |
37 |
35 9
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> B e. ( A I C ) ) |
38 |
35 10
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> B e. ( A I D ) ) |
39 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
40 |
|
simp-4r |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> e e. P ) |
41 |
40
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> e e. P ) |
42 |
|
simplr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> f e. P ) |
43 |
42
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> f e. P ) |
44 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> h e. P ) |
45 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> j e. P ) |
46 |
12
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> D e. ( A I e ) ) |
47 |
18
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> C e. ( A I f ) ) |
48 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) |
49 |
48
|
simpld |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> e e. ( A I h ) ) |
50 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) |
51 |
50
|
simpld |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> f e. ( A I j ) ) |
52 |
11
|
simprd |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) |
53 |
52
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) |
54 |
1 39 2 26 34 41 34 32 53
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( e ( dist ` G ) D ) = ( C ( dist ` G ) D ) ) |
55 |
|
simprr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) |
56 |
55
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) |
57 |
48
|
simprd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) |
58 |
50
|
simprd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) |
59 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> x e. P ) |
60 |
|
simprl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> x e. ( C I e ) ) |
61 |
|
simprr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> x e. ( D I f ) ) |
62 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> C =/= e ) |
63 |
1 2 26 28 30 32 34 36 37 38 39 41 43 44 45 46 47 49 51 54 56 57 58 59 60 61 62
|
tgbtwnconn1lem3 |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> D = f ) |
64 |
1 39 2 25 27 31 42 18
|
tgbtwncom |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> C e. ( f I A ) ) |
65 |
1 39 2 25 27 33 40 12
|
tgbtwncom |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> D e. ( e I A ) ) |
66 |
1 39 2 25 42 40 27 31 33 64 65
|
axtgpasch |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> E. x e. P ( x e. ( C I e ) /\ x e. ( D I f ) ) ) |
67 |
66
|
ad5antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) -> E. x e. P ( x e. ( C I e ) /\ x e. ( D I f ) ) ) |
68 |
63 67
|
r19.29a |
|- ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) -> D = f ) |
69 |
1 39 2 25 27 42 29 33
|
axtgsegcon |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> E. j e. P ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) |
70 |
69
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) -> E. j e. P ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) |
71 |
68 70
|
r19.29a |
|- ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) -> D = f ) |
72 |
1 39 2 25 27 40 29 31
|
axtgsegcon |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> E. h e. P ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) |
73 |
72
|
adantr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) -> E. h e. P ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) |
74 |
71 73
|
r19.29a |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) -> D = f ) |
75 |
74
|
ex |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C =/= e -> D = f ) ) |
76 |
24 75
|
syl5bir |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( -. C = e -> D = f ) ) |
77 |
76
|
orrd |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C = e \/ D = f ) ) |
78 |
17 23 77
|
mpjaodan |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
79 |
1 39 2 3 4 6 6 7
|
axtgsegcon |
|- ( ph -> E. f e. P ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) |
80 |
79
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) -> E. f e. P ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) |
81 |
78 80
|
r19.29a |
|- ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
82 |
1 39 2 3 4 7 7 6
|
axtgsegcon |
|- ( ph -> E. e e. P ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) |
83 |
81 82
|
r19.29a |
|- ( ph -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |