Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn1.p |
|- P = ( Base ` G ) |
2 |
|
tgbtwnconn1.i |
|- I = ( Itv ` G ) |
3 |
|
tgbtwnconn1.g |
|- ( ph -> G e. TarskiG ) |
4 |
|
tgbtwnconn1.a |
|- ( ph -> A e. P ) |
5 |
|
tgbtwnconn1.b |
|- ( ph -> B e. P ) |
6 |
|
tgbtwnconn1.c |
|- ( ph -> C e. P ) |
7 |
|
tgbtwnconn1.d |
|- ( ph -> D e. P ) |
8 |
|
tgbtwnconn1.1 |
|- ( ph -> A =/= B ) |
9 |
|
tgbtwnconn1.2 |
|- ( ph -> B e. ( A I C ) ) |
10 |
|
tgbtwnconn1.3 |
|- ( ph -> B e. ( A I D ) ) |
11 |
|
tgbtwnconn1.m |
|- .- = ( dist ` G ) |
12 |
|
tgbtwnconn1.e |
|- ( ph -> E e. P ) |
13 |
|
tgbtwnconn1.f |
|- ( ph -> F e. P ) |
14 |
|
tgbtwnconn1.h |
|- ( ph -> H e. P ) |
15 |
|
tgbtwnconn1.j |
|- ( ph -> J e. P ) |
16 |
|
tgbtwnconn1.4 |
|- ( ph -> D e. ( A I E ) ) |
17 |
|
tgbtwnconn1.5 |
|- ( ph -> C e. ( A I F ) ) |
18 |
|
tgbtwnconn1.6 |
|- ( ph -> E e. ( A I H ) ) |
19 |
|
tgbtwnconn1.7 |
|- ( ph -> F e. ( A I J ) ) |
20 |
|
tgbtwnconn1.8 |
|- ( ph -> ( E .- D ) = ( C .- D ) ) |
21 |
|
tgbtwnconn1.9 |
|- ( ph -> ( C .- F ) = ( C .- D ) ) |
22 |
|
tgbtwnconn1.10 |
|- ( ph -> ( E .- H ) = ( B .- C ) ) |
23 |
|
tgbtwnconn1.11 |
|- ( ph -> ( F .- J ) = ( B .- D ) ) |
24 |
1 11 2 3 4 5 7 12 10 16
|
tgbtwnexch |
|- ( ph -> B e. ( A I E ) ) |
25 |
1 11 2 3 4 5 12 14 24 18
|
tgbtwnexch |
|- ( ph -> B e. ( A I H ) ) |
26 |
1 11 2 3 4 5 6 13 9 17
|
tgbtwnexch |
|- ( ph -> B e. ( A I F ) ) |
27 |
1 11 2 3 4 5 13 15 26 19
|
tgbtwnexch |
|- ( ph -> B e. ( A I J ) ) |
28 |
1 11 2 3 4 5 12 14 24 18
|
tgbtwnexch3 |
|- ( ph -> E e. ( B I H ) ) |
29 |
1 11 2 3 4 6 13 15 17 19
|
tgbtwnexch |
|- ( ph -> C e. ( A I J ) ) |
30 |
1 11 2 3 4 5 6 15 9 29
|
tgbtwnexch3 |
|- ( ph -> C e. ( B I J ) ) |
31 |
1 11 2 3 5 6 15 30
|
tgbtwncom |
|- ( ph -> C e. ( J I B ) ) |
32 |
1 11 2 3 4 5 7 12 10 16
|
tgbtwnexch3 |
|- ( ph -> D e. ( B I E ) ) |
33 |
1 11 2 3 4 6 13 15 17 19
|
tgbtwnexch3 |
|- ( ph -> F e. ( C I J ) ) |
34 |
1 11 2 3 6 13 15 33
|
tgbtwncom |
|- ( ph -> F e. ( J I C ) ) |
35 |
1 11 2 3 15 13
|
axtgcgrrflx |
|- ( ph -> ( J .- F ) = ( F .- J ) ) |
36 |
35 23
|
eqtr2d |
|- ( ph -> ( B .- D ) = ( J .- F ) ) |
37 |
20 21
|
eqtr4d |
|- ( ph -> ( E .- D ) = ( C .- F ) ) |
38 |
1 11 2 3 12 7 6 13 37
|
tgcgrcomlr |
|- ( ph -> ( D .- E ) = ( F .- C ) ) |
39 |
1 11 2 3 5 7 12 15 13 6 32 34 36 38
|
tgcgrextend |
|- ( ph -> ( B .- E ) = ( J .- C ) ) |
40 |
1 11 2 3 12 14 5 6 22
|
tgcgrcomr |
|- ( ph -> ( E .- H ) = ( C .- B ) ) |
41 |
1 11 2 3 5 12 14 15 6 5 28 31 39 40
|
tgcgrextend |
|- ( ph -> ( B .- H ) = ( J .- B ) ) |
42 |
1 11 2 3 5 15
|
axtgcgrrflx |
|- ( ph -> ( B .- J ) = ( J .- B ) ) |
43 |
1 11 2 3 5 15 5 4 14 15 8 25 27 41 42
|
tgsegconeq |
|- ( ph -> H = J ) |