Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn.p |
|- P = ( Base ` G ) |
2 |
|
tgbtwnconn.i |
|- I = ( Itv ` G ) |
3 |
|
tgbtwnconn.g |
|- ( ph -> G e. TarskiG ) |
4 |
|
tgbtwnconn.a |
|- ( ph -> A e. P ) |
5 |
|
tgbtwnconn.b |
|- ( ph -> B e. P ) |
6 |
|
tgbtwnconn.c |
|- ( ph -> C e. P ) |
7 |
|
tgbtwnconn.d |
|- ( ph -> D e. P ) |
8 |
|
tgbtwnconn22.e |
|- ( ph -> E e. P ) |
9 |
|
tgbtwnconn22.1 |
|- ( ph -> A =/= B ) |
10 |
|
tgbtwnconn22.2 |
|- ( ph -> C =/= B ) |
11 |
|
tgbtwnconn22.3 |
|- ( ph -> B e. ( A I C ) ) |
12 |
|
tgbtwnconn22.4 |
|- ( ph -> B e. ( A I D ) ) |
13 |
|
tgbtwnconn22.5 |
|- ( ph -> B e. ( C I E ) ) |
14 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
15 |
3
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> G e. TarskiG ) |
16 |
7
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> D e. P ) |
17 |
6
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. P ) |
18 |
5
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> B e. P ) |
19 |
8
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> E e. P ) |
20 |
10
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> C =/= B ) |
21 |
|
simpr |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. ( B I D ) ) |
22 |
1 14 2 15 18 17 16 21
|
tgbtwncom |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. ( D I B ) ) |
23 |
13
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> B e. ( C I E ) ) |
24 |
1 14 2 15 16 17 18 19 20 22 23
|
tgbtwnouttr2 |
|- ( ( ph /\ C e. ( B I D ) ) -> B e. ( D I E ) ) |
25 |
3
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> G e. TarskiG ) |
26 |
7
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> D e. P ) |
27 |
5
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. P ) |
28 |
8
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> E e. P ) |
29 |
6
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> C e. P ) |
30 |
|
simpr |
|- ( ( ph /\ D e. ( B I C ) ) -> D e. ( B I C ) ) |
31 |
13
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. ( C I E ) ) |
32 |
1 14 2 25 29 27 28 31
|
tgbtwncom |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. ( E I C ) ) |
33 |
1 14 2 25 26 27 28 29 30 32
|
tgbtwnintr |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. ( D I E ) ) |
34 |
1 2 3 4 5 6 7 9 11 12
|
tgbtwnconn2 |
|- ( ph -> ( C e. ( B I D ) \/ D e. ( B I C ) ) ) |
35 |
24 33 34
|
mpjaodan |
|- ( ph -> B e. ( D I E ) ) |