| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn.p |
|- P = ( Base ` G ) |
| 2 |
|
tgbtwnconn.i |
|- I = ( Itv ` G ) |
| 3 |
|
tgbtwnconn.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
tgbtwnconn.a |
|- ( ph -> A e. P ) |
| 5 |
|
tgbtwnconn.b |
|- ( ph -> B e. P ) |
| 6 |
|
tgbtwnconn.c |
|- ( ph -> C e. P ) |
| 7 |
|
tgbtwnconn.d |
|- ( ph -> D e. P ) |
| 8 |
|
tgbtwnconn3.1 |
|- ( ph -> B e. ( A I D ) ) |
| 9 |
|
tgbtwnconn3.2 |
|- ( ph -> C e. ( A I D ) ) |
| 10 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> G e. TarskiG ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> B e. P ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> A e. P ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> C e. P ) |
| 15 |
|
simpr |
|- ( ( ph /\ ( # ` P ) = 1 ) -> ( # ` P ) = 1 ) |
| 16 |
1 10 2 11 12 13 14 15
|
tgldim0itv |
|- ( ( ph /\ ( # ` P ) = 1 ) -> B e. ( A I C ) ) |
| 17 |
16
|
orcd |
|- ( ( ph /\ ( # ` P ) = 1 ) -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |
| 18 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> G e. TarskiG ) |
| 19 |
|
simplr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> p e. P ) |
| 20 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. P ) |
| 21 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> B e. P ) |
| 22 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> C e. P ) |
| 23 |
|
simprr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A =/= p ) |
| 24 |
23
|
necomd |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> p =/= A ) |
| 25 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> D e. P ) |
| 26 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> B e. ( A I D ) ) |
| 27 |
|
simprl |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( D I p ) ) |
| 28 |
1 10 2 18 25 20 19 27
|
tgbtwncom |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( p I D ) ) |
| 29 |
1 10 2 18 21 20 19 25 26 28
|
tgbtwnintr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( B I p ) ) |
| 30 |
1 10 2 18 21 20 19 29
|
tgbtwncom |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( p I B ) ) |
| 31 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> C e. ( A I D ) ) |
| 32 |
1 10 2 18 20 22 25 31
|
tgbtwncom |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> C e. ( D I A ) ) |
| 33 |
1 10 2 18 25 22 20 19 32 27
|
tgbtwnexch3 |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( C I p ) ) |
| 34 |
1 10 2 18 22 20 19 33
|
tgbtwncom |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( p I C ) ) |
| 35 |
1 2 18 19 20 21 22 24 30 34
|
tgbtwnconn2 |
|- ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |
| 36 |
3
|
adantr |
|- ( ( ph /\ 2 <_ ( # ` P ) ) -> G e. TarskiG ) |
| 37 |
7
|
adantr |
|- ( ( ph /\ 2 <_ ( # ` P ) ) -> D e. P ) |
| 38 |
4
|
adantr |
|- ( ( ph /\ 2 <_ ( # ` P ) ) -> A e. P ) |
| 39 |
|
simpr |
|- ( ( ph /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) ) |
| 40 |
1 10 2 36 37 38 39
|
tgbtwndiff |
|- ( ( ph /\ 2 <_ ( # ` P ) ) -> E. p e. P ( A e. ( D I p ) /\ A =/= p ) ) |
| 41 |
35 40
|
r19.29a |
|- ( ( ph /\ 2 <_ ( # ` P ) ) -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |
| 42 |
1 4
|
tgldimor |
|- ( ph -> ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) |
| 43 |
17 41 42
|
mpjaodan |
|- ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |