Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn.p |
|- P = ( Base ` G ) |
2 |
|
tgbtwnconn.i |
|- I = ( Itv ` G ) |
3 |
|
tgbtwnconn.g |
|- ( ph -> G e. TarskiG ) |
4 |
|
tgbtwnconn.a |
|- ( ph -> A e. P ) |
5 |
|
tgbtwnconn.b |
|- ( ph -> B e. P ) |
6 |
|
tgbtwnconn.c |
|- ( ph -> C e. P ) |
7 |
|
tgbtwnconn.d |
|- ( ph -> D e. P ) |
8 |
|
tgbtwnconnln1.l |
|- L = ( LineG ` G ) |
9 |
|
tgbtwnconnln1.1 |
|- ( ph -> A =/= B ) |
10 |
|
tgbtwnconnln1.2 |
|- ( ph -> B e. ( A I C ) ) |
11 |
|
tgbtwnconnln1.3 |
|- ( ph -> B e. ( A I D ) ) |
12 |
3
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> G e. TarskiG ) |
13 |
6
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. P ) |
14 |
7
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> D e. P ) |
15 |
5
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> B e. P ) |
16 |
|
simpr |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. ( B I D ) ) |
17 |
1 8 2 12 13 14 15 16
|
btwncolg2 |
|- ( ( ph /\ C e. ( B I D ) ) -> ( B e. ( C L D ) \/ C = D ) ) |
18 |
3
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> G e. TarskiG ) |
19 |
6
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> C e. P ) |
20 |
7
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> D e. P ) |
21 |
5
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. P ) |
22 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
23 |
|
simpr |
|- ( ( ph /\ D e. ( B I C ) ) -> D e. ( B I C ) ) |
24 |
1 22 2 18 21 20 19 23
|
tgbtwncom |
|- ( ( ph /\ D e. ( B I C ) ) -> D e. ( C I B ) ) |
25 |
1 8 2 18 19 20 21 24
|
btwncolg3 |
|- ( ( ph /\ D e. ( B I C ) ) -> ( B e. ( C L D ) \/ C = D ) ) |
26 |
1 2 3 4 5 6 7 9 10 11
|
tgbtwnconn2 |
|- ( ph -> ( C e. ( B I D ) \/ D e. ( B I C ) ) ) |
27 |
17 25 26
|
mpjaodan |
|- ( ph -> ( B e. ( C L D ) \/ C = D ) ) |