| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn.p |
|- P = ( Base ` G ) |
| 2 |
|
tgbtwnconn.i |
|- I = ( Itv ` G ) |
| 3 |
|
tgbtwnconn.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
tgbtwnconn.a |
|- ( ph -> A e. P ) |
| 5 |
|
tgbtwnconn.b |
|- ( ph -> B e. P ) |
| 6 |
|
tgbtwnconn.c |
|- ( ph -> C e. P ) |
| 7 |
|
tgbtwnconn.d |
|- ( ph -> D e. P ) |
| 8 |
|
tgbtwnconn3.1 |
|- ( ph -> B e. ( A I D ) ) |
| 9 |
|
tgbtwnconn3.2 |
|- ( ph -> C e. ( A I D ) ) |
| 10 |
|
tgbtwnconnln3.l |
|- L = ( LineG ` G ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> A e. P ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> C e. P ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. P ) |
| 15 |
|
simpr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) |
| 16 |
1 10 2 11 12 13 14 15
|
btwncolg1 |
|- ( ( ph /\ B e. ( A I C ) ) -> ( B e. ( A L C ) \/ A = C ) ) |
| 17 |
3
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) |
| 18 |
4
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A e. P ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. P ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> B e. P ) |
| 21 |
|
simpr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) |
| 22 |
1 10 2 17 18 19 20 21
|
btwncolg3 |
|- ( ( ph /\ C e. ( A I B ) ) -> ( B e. ( A L C ) \/ A = C ) ) |
| 23 |
1 2 3 4 5 6 7 8 9
|
tgbtwnconn3 |
|- ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |
| 24 |
16 22 23
|
mpjaodan |
|- ( ph -> ( B e. ( A L C ) \/ A = C ) ) |