| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tgbtwndiff.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tgbtwndiff.d | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tgbtwndiff.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tgbtwndiff.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgbtwndiff.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							tgbtwndiff.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							tgbtwndiff.l | 
							 |-  ( ph -> 2 <_ ( # ` P ) )  | 
						
						
							| 8 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> G e. TarskiG )  | 
						
						
							| 9 | 
							
								5
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> A e. P )  | 
						
						
							| 10 | 
							
								6
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> B e. P )  | 
						
						
							| 11 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> u e. P )  | 
						
						
							| 12 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> v e. P )  | 
						
						
							| 13 | 
							
								1 2 3 8 9 10 11 12
							 | 
							axtgsegcon | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> E. c e. P ( B e. ( A I c ) /\ ( B .- c ) = ( u .- v ) ) )  | 
						
						
							| 14 | 
							
								8
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> G e. TarskiG )  | 
						
						
							| 15 | 
							
								11
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> u e. P )  | 
						
						
							| 16 | 
							
								12
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> v e. P )  | 
						
						
							| 17 | 
							
								10
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> B e. P )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> B = c )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq2d | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> ( B .- B ) = ( B .- c ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> ( B .- c ) = ( u .- v ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqtr2d | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> ( u .- v ) = ( B .- B ) )  | 
						
						
							| 22 | 
							
								1 2 3 14 15 16 17 21
							 | 
							axtgcgrid | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> u = v )  | 
						
						
							| 23 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> u =/= v )  | 
						
						
							| 24 | 
							
								23
							 | 
							neneqd | 
							 |-  ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> -. u = v )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							pm2.65da | 
							 |-  ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) -> -. B = c )  | 
						
						
							| 26 | 
							
								25
							 | 
							neqned | 
							 |-  ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) -> B =/= c )  | 
						
						
							| 27 | 
							
								26
							 | 
							ex | 
							 |-  ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) -> ( ( B .- c ) = ( u .- v ) -> B =/= c ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							anim2d | 
							 |-  ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) -> ( ( B e. ( A I c ) /\ ( B .- c ) = ( u .- v ) ) -> ( B e. ( A I c ) /\ B =/= c ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							reximdva | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> ( E. c e. P ( B e. ( A I c ) /\ ( B .- c ) = ( u .- v ) ) -> E. c e. P ( B e. ( A I c ) /\ B =/= c ) ) )  | 
						
						
							| 30 | 
							
								13 29
							 | 
							mpd | 
							 |-  ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> E. c e. P ( B e. ( A I c ) /\ B =/= c ) )  | 
						
						
							| 31 | 
							
								1 2 3 4 7
							 | 
							tglowdim1 | 
							 |-  ( ph -> E. u e. P E. v e. P u =/= v )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							r19.29vva | 
							 |-  ( ph -> E. c e. P ( B e. ( A I c ) /\ B =/= c ) )  |