Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tgbtwnintr.1 |
|- ( ph -> A e. P ) |
6 |
|
tgbtwnintr.2 |
|- ( ph -> B e. P ) |
7 |
|
tgbtwnintr.3 |
|- ( ph -> C e. P ) |
8 |
|
tgbtwnintr.4 |
|- ( ph -> D e. P ) |
9 |
|
tgbtwnintr.5 |
|- ( ph -> A e. ( B I D ) ) |
10 |
|
tgbtwnintr.6 |
|- ( ph -> B e. ( C I D ) ) |
11 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> G e. TarskiG ) |
12 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> B e. P ) |
13 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> x e. P ) |
14 |
|
simprr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> x e. ( B I B ) ) |
15 |
1 2 3 11 12 13 14
|
axtgbtwnid |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> B = x ) |
16 |
|
simprl |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> x e. ( A I C ) ) |
17 |
15 16
|
eqeltrd |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> B e. ( A I C ) ) |
18 |
1 2 3 4 6 7 8 5 6 9 10
|
axtgpasch |
|- ( ph -> E. x e. P ( x e. ( A I C ) /\ x e. ( B I B ) ) ) |
19 |
17 18
|
r19.29a |
|- ( ph -> B e. ( A I C ) ) |