Metamath Proof Explorer


Theorem tgbtwnintr

Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwnintr.1
|- ( ph -> A e. P )
tgbtwnintr.2
|- ( ph -> B e. P )
tgbtwnintr.3
|- ( ph -> C e. P )
tgbtwnintr.4
|- ( ph -> D e. P )
tgbtwnintr.5
|- ( ph -> A e. ( B I D ) )
tgbtwnintr.6
|- ( ph -> B e. ( C I D ) )
Assertion tgbtwnintr
|- ( ph -> B e. ( A I C ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwnintr.1
 |-  ( ph -> A e. P )
6 tgbtwnintr.2
 |-  ( ph -> B e. P )
7 tgbtwnintr.3
 |-  ( ph -> C e. P )
8 tgbtwnintr.4
 |-  ( ph -> D e. P )
9 tgbtwnintr.5
 |-  ( ph -> A e. ( B I D ) )
10 tgbtwnintr.6
 |-  ( ph -> B e. ( C I D ) )
11 4 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> G e. TarskiG )
12 6 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> B e. P )
13 simplr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> x e. P )
14 simprr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> x e. ( B I B ) )
15 1 2 3 11 12 13 14 axtgbtwnid
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> B = x )
16 simprl
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> x e. ( A I C ) )
17 15 16 eqeltrd
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I C ) /\ x e. ( B I B ) ) ) -> B e. ( A I C ) )
18 1 2 3 4 6 7 8 5 6 9 10 axtgpasch
 |-  ( ph -> E. x e. P ( x e. ( A I C ) /\ x e. ( B I B ) ) )
19 17 18 r19.29a
 |-  ( ph -> B e. ( A I C ) )