| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tkgeom.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							tkgeom.d | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							tkgeom.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							tkgeom.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 5 | 
							
								
							 | 
							tgbtwntriv2.1 | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 6 | 
							
								
							 | 
							tgbtwntriv2.2 | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							tgbtwncomb.3 | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							tgbtwnne.1 | 
							 |-  ( ph -> B e. ( A I C ) )  | 
						
						
							| 9 | 
							
								
							 | 
							tgbtwnne.2 | 
							 |-  ( ph -> B =/= A )  | 
						
						
							| 10 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ A = C ) -> G e. TarskiG )  | 
						
						
							| 11 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ A = C ) -> A e. P )  | 
						
						
							| 12 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ A = C ) -> B e. P )  | 
						
						
							| 13 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ A = C ) -> B e. ( A I C ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ A = C ) -> A = C )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq2d | 
							 |-  ( ( ph /\ A = C ) -> ( A I A ) = ( A I C ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ A = C ) -> B e. ( A I A ) )  | 
						
						
							| 17 | 
							
								1 2 3 10 11 12 16
							 | 
							axtgbtwnid | 
							 |-  ( ( ph /\ A = C ) -> A = B )  | 
						
						
							| 18 | 
							
								17
							 | 
							eqcomd | 
							 |-  ( ( ph /\ A = C ) -> B = A )  | 
						
						
							| 19 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ A = C ) -> B =/= A )  | 
						
						
							| 20 | 
							
								19
							 | 
							neneqd | 
							 |-  ( ( ph /\ A = C ) -> -. B = A )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							pm2.65da | 
							 |-  ( ph -> -. A = C )  | 
						
						
							| 22 | 
							
								21
							 | 
							neqned | 
							 |-  ( ph -> A =/= C )  |