Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tgbtwntriv2.1 |
|- ( ph -> A e. P ) |
6 |
|
tgbtwntriv2.2 |
|- ( ph -> B e. P ) |
7 |
|
tgbtwncomb.3 |
|- ( ph -> C e. P ) |
8 |
|
tgbtwnne.1 |
|- ( ph -> B e. ( A I C ) ) |
9 |
|
tgbtwnne.2 |
|- ( ph -> B =/= A ) |
10 |
4
|
adantr |
|- ( ( ph /\ A = C ) -> G e. TarskiG ) |
11 |
5
|
adantr |
|- ( ( ph /\ A = C ) -> A e. P ) |
12 |
6
|
adantr |
|- ( ( ph /\ A = C ) -> B e. P ) |
13 |
8
|
adantr |
|- ( ( ph /\ A = C ) -> B e. ( A I C ) ) |
14 |
|
simpr |
|- ( ( ph /\ A = C ) -> A = C ) |
15 |
14
|
oveq2d |
|- ( ( ph /\ A = C ) -> ( A I A ) = ( A I C ) ) |
16 |
13 15
|
eleqtrrd |
|- ( ( ph /\ A = C ) -> B e. ( A I A ) ) |
17 |
1 2 3 10 11 12 16
|
axtgbtwnid |
|- ( ( ph /\ A = C ) -> A = B ) |
18 |
17
|
eqcomd |
|- ( ( ph /\ A = C ) -> B = A ) |
19 |
9
|
adantr |
|- ( ( ph /\ A = C ) -> B =/= A ) |
20 |
19
|
neneqd |
|- ( ( ph /\ A = C ) -> -. B = A ) |
21 |
18 20
|
pm2.65da |
|- ( ph -> -. A = C ) |
22 |
21
|
neqned |
|- ( ph -> A =/= C ) |