Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tkgeom.p | |- P = ( Base ` G ) |
|
| tkgeom.d | |- .- = ( dist ` G ) |
||
| tkgeom.i | |- I = ( Itv ` G ) |
||
| tkgeom.g | |- ( ph -> G e. TarskiG ) |
||
| tgbtwnintr.1 | |- ( ph -> A e. P ) |
||
| tgbtwnintr.2 | |- ( ph -> B e. P ) |
||
| tgbtwnintr.3 | |- ( ph -> C e. P ) |
||
| tgbtwnintr.4 | |- ( ph -> D e. P ) |
||
| tgbtwnouttr.1 | |- ( ph -> B =/= C ) |
||
| tgbtwnouttr.2 | |- ( ph -> B e. ( A I C ) ) |
||
| tgbtwnouttr.3 | |- ( ph -> C e. ( B I D ) ) |
||
| Assertion | tgbtwnouttr | |- ( ph -> B e. ( A I D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | |- P = ( Base ` G ) |
|
| 2 | tkgeom.d | |- .- = ( dist ` G ) |
|
| 3 | tkgeom.i | |- I = ( Itv ` G ) |
|
| 4 | tkgeom.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tgbtwnintr.1 | |- ( ph -> A e. P ) |
|
| 6 | tgbtwnintr.2 | |- ( ph -> B e. P ) |
|
| 7 | tgbtwnintr.3 | |- ( ph -> C e. P ) |
|
| 8 | tgbtwnintr.4 | |- ( ph -> D e. P ) |
|
| 9 | tgbtwnouttr.1 | |- ( ph -> B =/= C ) |
|
| 10 | tgbtwnouttr.2 | |- ( ph -> B e. ( A I C ) ) |
|
| 11 | tgbtwnouttr.3 | |- ( ph -> C e. ( B I D ) ) |
|
| 12 | 9 | necomd | |- ( ph -> C =/= B ) |
| 13 | 1 2 3 4 6 7 8 11 | tgbtwncom | |- ( ph -> C e. ( D I B ) ) |
| 14 | 1 2 3 4 5 6 7 10 | tgbtwncom | |- ( ph -> B e. ( C I A ) ) |
| 15 | 1 2 3 4 8 7 6 5 12 13 14 | tgbtwnouttr2 | |- ( ph -> B e. ( D I A ) ) |
| 16 | 1 2 3 4 8 6 5 15 | tgbtwncom | |- ( ph -> B e. ( A I D ) ) |