Metamath Proof Explorer


Theorem tgbtwnouttr

Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwnintr.1
|- ( ph -> A e. P )
tgbtwnintr.2
|- ( ph -> B e. P )
tgbtwnintr.3
|- ( ph -> C e. P )
tgbtwnintr.4
|- ( ph -> D e. P )
tgbtwnouttr.1
|- ( ph -> B =/= C )
tgbtwnouttr.2
|- ( ph -> B e. ( A I C ) )
tgbtwnouttr.3
|- ( ph -> C e. ( B I D ) )
Assertion tgbtwnouttr
|- ( ph -> B e. ( A I D ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwnintr.1
 |-  ( ph -> A e. P )
6 tgbtwnintr.2
 |-  ( ph -> B e. P )
7 tgbtwnintr.3
 |-  ( ph -> C e. P )
8 tgbtwnintr.4
 |-  ( ph -> D e. P )
9 tgbtwnouttr.1
 |-  ( ph -> B =/= C )
10 tgbtwnouttr.2
 |-  ( ph -> B e. ( A I C ) )
11 tgbtwnouttr.3
 |-  ( ph -> C e. ( B I D ) )
12 9 necomd
 |-  ( ph -> C =/= B )
13 1 2 3 4 6 7 8 11 tgbtwncom
 |-  ( ph -> C e. ( D I B ) )
14 1 2 3 4 5 6 7 10 tgbtwncom
 |-  ( ph -> B e. ( C I A ) )
15 1 2 3 4 8 7 6 5 12 13 14 tgbtwnouttr2
 |-  ( ph -> B e. ( D I A ) )
16 1 2 3 4 8 6 5 15 tgbtwncom
 |-  ( ph -> B e. ( A I D ) )